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Abstract

Let � be a set of � points in � ��� in general position, i.e., no	�
�
points on a common � 	������ -flat,

����	����
. A � -set

of � is a set � of � points in � that can be separated from����� by a hyperplane. A � -facet of � is an oriented � ��� ��� -
simplex spanned by

�
points in � which has exactly � points

from � on the positive side of its affine hull.
If � is a planar point set and � is even, a halving edge

is an undirected edge between two points, such that the con-
necting line has the same number of points on either side.
The number of �!��"$# � -sets is twice the number of halving
edges. Inspired by Dey’s recent proof of a new bound on the
number of � -sets we show that% 
&')($* + �-,/.10�2 
���� "$## 354 + ��"$##�3
where ,/.6072 is the number of halving edges incident to point2 and

%
is the number of crossing pairs of halving edges.

The identity allows us, among other things, to determine the
maximum number of halving edges in a set of 12 points. An
analogous identity holds for � -facets.

For � in � �98 we show that for � � ��"�: � # the number
of (
� � )-facets (i.e.,

	
-facets with ; ��	�� � ) is maximized

for sets in convex position, where this number is known to
be �<� 
���� �=� 
 # � � � #>�=� 
?�@� �=� 
 # � �<� 
BAC� " AED
For � � ��"�: �F� , �>GH� � �I�-� �F�@� �-#J� 
FKJ� " A is the tight
upper bound for the number of � � � � -sets (i.e.,

	
-sets with�L�M	N� � ).O
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Finally we discuss the relation between the vector of
numbers of � -sets, � 4 �JP1D6D1DHP � �Q� and the vector of num-
bers of � -facets, � 4 ; P6D1D1D1P � �R� for a given point set. In
the plane the number of � -sets equals the number of �-� ���@� -
facets. In � � 8 the � -set vector determines the � -facet vector
(and vice versa) by a linear relation. There is no such relation
in � �9� for

�
exceeding 3.

These results can be obtained by arguments via continu-
ous motion of one point set to another while observing cer-
tain quantities related to � -sets and � -facets. For the relation
between � -sets and � -facets in � � 8 , we give a more direct
argument via so-called � -set polytopes.

1 Introduction and basics

Let � be a set of � points in � �S� in general position, i.e., no	T
?�
points on a common � 	7�R�@� -flat,

�L�M	N�R�
.� -Sets. A � -set of � is a set � of � points in � that can

be strictly separated from ���L� by a hyperplane. We de-
note by U)V/�-� � the number of � -sets of � , and by WSV>�X� � the
number of � � � � -sets, i.e., W V �-� �ZY 4\[ V]<^�_ U ] �-� � . If � is
understood, we write U V and W V short for U V �X� � and W V �X� � ,
respectively.

In the plane, an upper bound of `a�!�cb � � on U V was
given in [ELSS] (see also [Lo]), where also sets with U V 4d �!�fe=g$0h�i� 
j�@�k� were described (see [EW] for an alternative
construction). After the improvement of the upper bound
to `a�!� b �l"ce<gJ0Cmn�i� 
o�@�k� in [PSS] in 1989, Dey recently
provided a further substantial improvement of the bound
to `a�X�qpb � � (building upon considerations in [AAS]). In� � 8 , the best upper bound is `a�!�7�lrts 8 � from [AACS], for
general � , and from [DE], for � 4vu ��"n#)w (improving on
bounds in [BFL, ACEGSW, Ep, AAS]). In � �f� bounds of
the form `a�!�yx<�zs{G}|@��~<�zs{G}�t���k� � for some small � ��� ; have
been obtained recently in [AACS] (see [ZV, AAS] for previ-
ous steps).

The situation is much better understood for � � � � -
sets, where [CS] provide an asymptotically tight bound of`a�!��x<�zs{Gk|1��~<�zs{G}� � (this bound is attained by points on the mo-
ment curve), and in the plane there is even a tight upper
bound of ��� for ���R��"n# [AG, Pe].



For a more complete account of the history of the prob-
lem, for related notions and applications in computational
geometry, see the survey [AW]. Remarkably, almost all al-
gorithmic applications and also almost all proofs of bounds
proceed actually via a different notion (and its dual) which is
described next.� -Facets. A � -facet of � is an oriented � � ���� -simplex
spanned by

�
points in � which has exactly � points from �

on the positive side of its affine hull.
We denote by ��� �-� � the number of � -facets of � , and

by � � �X� � the number of � � � � -facets, i.e., � � �X� � Y 4[ � ]<^�� � ] �X� � . If � is understood, we write ��� and � � short
for ��� �X� � and � � �-� � , respectively. The term “facet” is jus-
tified by the fact that the ; -facets of � are exactly the facets
of the polytope �1g
	��/� . There is a relationship between
the maximum number of � -sets and the maximum number
of �-�� �C� -facets of sets of � points, although this relation
has never really been worked out carefully. In addition, the
reader should be aware of ambiguities concerning the notion
of � -facets in the literature.

Results. In Section 2, we give an identity for the planar
case concerning the number of crossings between � -facets
(which we call � -edges in the plane) and the sequence of
numbers of � -edges incident to points 2�� � . In this ex-
tended abstract we restrict the proof to halving edges—these
are the undirected versions of �!��"n# � �@� -facets under the as-
sumption that � is even; see Theorem 1. The discovery of
the relations was inspired by Dey’s recent proof of the new`a�!�qpb � � bound for planar � -sets. In fact, this bound fol-
lows also directly from the identities via a known lemma on
the number of edges of graphs which can be embedded in the
plane with few crossings ([ACNS, Lei]).

Section 3 provides exact upper bounds on the number of� � � � -facets and the number of � � � � -sets in � � 8 , provided� and � is not too large (roughly ��"�: ); see Theorem 2.
Finally, in Section 4 we show that the vectors �U 4�XU V ��� � _V ^�_ and �� 4 � ��� ��� �I�� ^�� determine each other in � � 8 by

a linear relation (for
� 4 # this is simple); see Theorem 3. In

fact, this allows us to infer the tight bound on � � � � -sets di-
rectly from the bound on � � � � -facets, so we have to provide
a proof for the latter only.

Back to � -facets. A sequence � 2 _ P6D1D6D 2 � � of
�

linearly
independent points in � �S� partitions the space into two open
halfspaces and a hyperplane (the affine hull of �{2 _ P6D1D1D 2 �
� ):
Points 2 ��� _ for which the sign of the determinant of the ma-
trix with rows � 2 ] �@� , 	 4 �JP1D1D6D}��
 � , is positive, points
for which the sign is negative, and points for which the sign
is 0. We denote this sign by �}0�	 � 2 _ P1D1D6D 2 � P 2 ��� _ � . So a � -
facet can be specified by a sequence � 2 _ P1D1D6D 2 � � of

�
points

in � such that �k0
	�� 2 _ P1D1D6D 2 � P 2 � � ; for exactly � points 2 in� . In fact, we will use the notation � 2 _ P1D1D6D 2 ��� for � -facets,
meaning all permutations of � 2 _ P1D1D6D 2 � � which can be ob-
tained from that sequence via an even number of transposi-
tions of adjacent elements (since this will not change the sign

of the determinant with a
�f
5�

-th point 2 ). An odd number
of transpositions in this sequence will change a � -facet into
an �X� � � ����� -facet.

For our proofs we want to make explicit that the structure
of � -facets of � 4 �k2 _ P1D1D6D 2 � � is completely determined by
the � ���� _�� signs �}0�	 � 2 ]! P6D1D1D 2 ] ��"  � , � �5	 _ � D1D6D � 	 ��� _ �� . If we move the points in � , then no � -facet will change its
index (i.e., the value � ), unless one of these signs changes.
If the sign changes for exactly one such tuple # , then only� -facets composed of

�
of the points in # change their index,

either to �=� �R�@� or to �=� 
?�@� .
Moving around. In our proofs we consider the changes
in �� while the point set moves continuously. We will assume
that during the motion the set stays in general position, ex-
cept for a finite number of discrete instances, where the sign
of exactly one � �f
���� -tuple changes.

Of course, this paradigm is not new for the analysis of
configurations in combinatorial geometry. Tverberg’s orig-
inal proof of his famous generalization of Radon’s theorem
is a prominent example [Tv]. Recently, continuous motions
were used also in the context of � -sets by Gullikson and Hole
[GH].

2 Planar identities

Let us briefly recapitulate the set-up for this section. We
are given a set � of � points in the plane, � even, such that
no three points lie on a common line. A halving edge is an
undirected edge between two points, such that the connecting
line has the same number of points on either side; sometimes,
when we refer to such an edge we mean the straight line
segment connecting its endpoints. Two halving edges cross,
if their segments intersect in a single point in their relative
interiors.

Theorem 1% 
F&'�($* + �X,/.6072 
?�@� "$## 354 + ��"n##?3 (1)

where ,/.6072 is the number of halving edges incident to 2
(this number is always odd), and

%
is the number of pair-

wise crossings of halving edges.

Implications. Before we proceed to the proof, let us ex-
hibit three implications of this identity, most prominently
Tamal Dey’s recent bound on the number of halving edges
(which relates to � -sets by the fact that the number of �!��"n# � -
sets is twice the number of halving edges).

Corollary 1 ([De]) The number of halving edges of � is
bounded by `a�X��$ s 8 � .
This bound is a direct consequence of the inequality

% �� G@"�% which follows from Identity (1) and the fact that a
graph with � vertices embedded in the plane with & edge
crossings cannot have more than `a�('*),+7�!� P pb &z� G �k� edges
([ACNS, Lei], see also [PT, PA]).



Figure 1: Point configurations which maximize the number of halving edges.

Corollary 2 If � � , � even, denotes the maximum possible
number of halving edges of � points in the plane, then � G 4�

, � $ 4 A , ��� 4 �
, ��� 4 �

, � _�� 4 �6A , and � _ G 4 � % .

The numbers for � � � ; were previously known (see
e.g., [Fe], where � _ � was determined by a computer-aided
enumeration of all possible combinatorial configurations of
10 points in the plane). Figure 1 displays configurations
which realize the quantities claimed in the corollary. All
upper bounds can be readily derived from the inequality[ '�($* � ���
	�� ' � _� s{GG � � � � s{GG � implied by Identity (1), in con-
junction with the facts—implied by Lemma 1 below—that
every point is incident to an odd number of halving edges,
and that there are at least three points incident to exactly one
halving edge (extreme points must satisfy this condition).
For example for 12, this implies that observing these con-
straints the sum [ ')($* ,/.60 2 is maximized for the “degree
sequence” � �JP1�JP1�$P{A>P{A>PkAlPkAlPkA>P{A>PtK/P{K>P{Kn� .
Corollary 3 ([PS]) � allows a perfect cross-matching (a
partition into edges such that any pair of such edges crosses),
iff � has exactly ��"n# halving edges.

First observe that in a perfect cross-matching, every edge is
halving. Identity (1) tells us, that if there are already � � s{GG �crossings among halving edges, then ,/.6072 4 � for all 2 �� , and thus there cannot be more halving edges beyond those
in the perfect cross-matching. On the other hand, if there are��"n# halving edges, then ,/.1072 4 � for all 2 (since ,/.6072 has
to be at least 1 in any case), and thus there must be � � s{GG �crossings. That is, the ��"$# halving edges pairwise cross and
form a perfect cross-matching.

Next we prepare two ingredients for the proof of Theo-
rem 1.

Lovász’ Lemma. Let � be a line through point 2�� �
which misses all other points in � . Then there is a unique
side of � which contains the majority of points from � � �{2 � .
Call this side the large side of � , and the other open halfplane
determined by � the small side of � .

Lemma 1 ([Lo]) If a line � contains a unique point 2 in � ,
and there are � halving edges incident to 2 emanating into
the small side of � , then there are � 
� halving edges ema-
nating into the large side of � .
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Figure 2: Local changes during mutation.

The lemma can be proven by rotating a line � about point2 starting in position � until it coincides with � again. The
halving edges incident to 2 are encountered in alternation on
the large and small side of � , starting and ending on the large
side.

In fact, the lemma completely characterizes the graph
of halving edges of a point set. Simple implications of the
lemma which we have mentioned before are that the num-
ber of halving edges incident to a point in � is always odd,
and that there is exactly one halving edge incident to each
extreme point of � .

Mutations while moving. Recall from the introduction,
that if we start moving the points in � , the graph of halv-
ing edges will not change unless a triple � 2 P���P��n� of points
becomes collinear and changes its orientation. Even then,
the graph of halving edges will not change except for edges
on �{2 P���P�� � . Following the terminology of oriented matroids
(cf. [BLSWZ]), we call such a change of orientation a muta-
tion.

Let us investigate such a mutation on three points�k2 P���P�� � . We assume that this is the only mutation that oc-
curred (i.e., there is no other simultaneous mutation), and
that the points stayed disjoint when they passed though
collinearity. First we consider only the case when �{2 P�� � is
a halving edge before mutation, and that

�
lies on the seg-

ment connecting 2 and
�

at the moment of collinearity (see
Figure 2). Hence, � ��P�� � and � �)P 2 � are not halving edges
before mutation. After mutation, �k2 P�� � is not halving, but� ��P�� � and � �)P 2 � are. That is, the number of halving edges
increased by one, and no degree in the graph of halving edges
changed except for point

�
, whose degree increased by 2.

What happened to crossings of halving edges? If we ig-
nore edges incident to

�
, then nothing changes. Crossings

with the edge �k2 P�� � are replaced by crossings with � ��P�� � or� �)P 2 � after mutation. As for the edges incident to
�
, let �

be a line through
�

parallel to the segment connecting 2 and�
. The halfplane of � containing �{2 P�� � is the large side of

� , before and after mutation. If � is the number of halving
edges incident to

�
emanating into the large side of � before

mutation, then these edges were responsible for � crossings
with �k2 P�� � . These crossings disappear after mutation. No
new crossings appear.

Let ,/.10 � and ,>.10�� � denote the number of halving edges

incident to
�

before and after mutation, respectively. Note
that ,/.60 � � 4 ,/.60 ��
 # and � 4 �X,/.60 ��
��� "n# . Let

%
and% � denote the number of crossings of halving edges before

and after mutation, respectively. We have
% � 4 % � � , and

so % 
 + �-,/.10 �9
?�@� "n## 34 % 
 + � #C3?4% � � 
 + � 
?�# 34 % � 
 + �-,/.10 � �y
?�@� "n## 3
which proves that the validity of Identity (1) is not affected
by the mutation, since no degree other than ,/.60 � changes
during mutation.

Now recall that we assumed that �k2 P�� � was a halving
edge before mutation. However, the mutation described, and
its inverse, are the only types of mutations affecting the graph
of halving edges and its crossings.

Proof of Theorem 1. First observe that for all even �
there is a set � of � points which satisfies Identity (1).
The vertices of a regular � -gon, or the vertices of a regu-
lar �X� ��@� -gon together with its center are easy examples.
Now it remains to use the fact that any two sets of � points in
general position can be continuously transformed into each
other in such a way that the points remain pairwise distinct,
they never have more than one triple of points collinear, and
such a collinearity occurs only finitely often.

Other identities. A simple algebraic manipulation al-
lows us to rewrite Identity (1) as

% % 
&')($* �-,/.10�2 � G 4 � �!� �Q�@� D
Let ,/.10 � 2 denote the number of � -edges1 emanating from
point 2 (which equals the number of incoming � -edges). Let% � denote the number of crossings of � -edges, and for

		�4 � ,let
% ]�
 � denote the number of crossings between

	
-edges and� -edges. Then (reading � � _ as 0) we have% � 
 &')($* + ,/.60 � 2# 3?4 � � � _ P

for ; � � � ��"$# �j� , and% ]�
 � 
F&')($* ,/.10 ] 2��-,/.10 � 2 �j��� 4 #
� ] � _ P
for ; � 	 ��� � ��"n# �� . (The latter identity allows im-
provements of previous bounds in [We] on [ V (� U)V , for��� � �JP # P1D1D6D � � .) Proofs follow from an analysis of muta-
tions as in the proof given here, and will be given in the full
version of the paper.

1Recall, that we use “� -edges” for � -facets in the plane.



3 � � � � -facets and � � � � -sets in � � 8
Theorem 2 Let � be a set of � points in general position in� � 8 . Then

� � � �=� 
5�@� �<� 
 # � � � #l�<� 
?�@� �<� 
 # � �=� 
MAJ� " A
for � � ��"�: � # , andW V � � G � � �I�i� �j��� �-#J� 
MKJ� " A
for � � ��"�: � � . Both bounds are attained for sets in convex
position.

Recall that in the plane a tight bound of W V � ��� and � � ��<� 
 ��� � is known for �F� ��"n# and �5� ��"n# � � ([AG,
Pe]). In � � 8 , the number of � -facets is #>�=� 
 ��� �X� � � �# � for every set of � points in convex position ([Lee, CS,
Sh]), and by Theorem 3 below this implies that the number
of � -sets is � 
 #>�X� � � �5�@� �i� �?��� (see also [GH]). The
theorem above quotes the resulting numbers of � � � � -facets
and � � � � -sets for point sets in convex position. In our proof
we will show that we can always move a point set in � � 8
into convex position while the numbers � � , � � ��"�: � # ,
never decrease. This gives the result claimed for � � � � -sets.
Theorem 3 below yields W V 4 �(� V � _ 
 � V ��G � "$# 
 #$� , so
the bound for � � � � -sets can be easily obtained, too.

So we consider a set � of ��� A points in � � 8 , and ana-
lyze the effect of mutations of � on the vectors �� and �� .

A mutation is the situation that four points become copla-
nar and change their sign as discussed in the introduc-
tion. More formally, a mutation is a triple �X� � P � � P � � � ,
where �a� 4 � 2 �_ P6D1D6DHP 27�� � , � � 4 � 2 � _ P1D6D1DHP 2 � � � , and� � 4 � 2 � _ P6D1D1D1P 2 �� � are ordered point sets, �a� and � �
in general position, such that: (i) �k0
	 � 2 �_ P1D6D1D6P 2 �$ � � ; ,�k0
	 � 2 � _ P6D1D6DHP 2 �$ � 4 ; , and �k0
	7� 2 � _ P1D1D6DHP 2 �$ � � ; . (ii) For; ��� ���9� &�� � � � , � ��P � P & P{�C� �4 � �JP # P{A>P : � , we have

�}0�	 � 2 �� P 2 �� P 2 �� P 2 �� � 4 �k0
	7� 2 � � P 2 � � P 2 � � P 2 � � �4 �k0
	 � 2 � � P 2 � � P 2 � � P 2 � � � D
(iii) There is a continuous motion from � � to � � and from� � to � � with all intermediate stages in general position.

If � 2 �_ P 2 �G P 2 �8 � is a � -facet in �a� , then we call � the index
of the mutation.

Convex mutation. We call a mutation a convex muta-
tion, if the sequence � 2 � _ P1D1D6D1P 2 �$ � forms a convex quadrilat-
eral in its plane (referring to the notation as set above); see
Figure 3. This scenario is characterized by the fact that for
all points 2 �?� � 8 , 2 is on same side of all oriented facets� 2 � _ P 2 � G P 2 � 8 � , � 2 � _ P 2 � G P 2 �$ � , � 2 � _ P 2 � 8 P 2 �$ � , and � 2 � G P 2 � 8 P 2 �$ � . In fact,
because of (ii) and (iii) above, this is true for all points in� � � �{2 � _ P6D1D1D1P 2 �$ � , even if we replace the “0” by “+” in the
superscripts.

It follows that � 2 �_ P 2 �G P 2 �8 � is a � -facet that turns into a�<� 
���� -facet � 2 � _ P 2 �G P 2 �8 � , since it “gained” 2 �$ on its pos-
itive side, � 2 _ P 2 8 P 2 $�� turns from a � - to a �=� 
 ��� -facet,

and � 2 _ P 2 G P 2 $ � and � 2 G P 2 8 P 2 $�� turn from �<� 
���� - to � -facet.
Hence, vector �� (and thus �� ) does not change during a con-
vex mutation.

Mutation through triangle. We call a mutation a mu-
tation through triangle, if 2 �$ is in the convex hull of�k2 � _ P 2 � G P 2 � 8 � ; see Figure 4. This is characterized by the
fact that for all points 2 �\� ��8 , 2 is on the same side of
all oriented facets � 2 � _ P 2 � G P 2 � 8 � , � 2 � _ P 2 � G P 2 �$ � , � 2 � _ P 2 �$ P 2 � 8 � , and� 2 � G P 2 � 8 P 2 �$ � .

Hence, if � 2 �_ P 2 �G P 2 �8 � is a � -facet, then � 2 _ P 2 G P 2 8 �
turns from a � -facet to a �=� 
 �@� -facet, while � 2 _ P 2 G P 2 $�� ,� 2 _ P 2 $ P 2 8�� , and � 2 G P 2 8 P 2 $�� turn from �<� 
\�@� -facets to � -
facets. That is, the number of � -facets increases by two,
while the number of �<� 
 ��� -facets decreases by the same
amount. There is also a mirrored change in the number of�!� � � �?AJ�H� and �!� � � � : � -facets, which may lead to
interferences if � is close to ��"$# . This is taken care of in the
following lemma.

Lemma 2 For a mutation through triangle with index � ,
with the four numbers � P � 
 �JP � � � �?A and � � � � :
distinct, we have

� � � � � 8 �X� � � 4 ��� �X� � �4 ��� �X� � ��
 # 4 � � � � � 8 �-� � � 
 # P
	���� � � � � $ �X� � � 4 � � � _ �-� � �4 � � � _ �X� � �c� # 4 � � � � � $ �X� � �c� # D
If � 
?� 4 � � � � : , then

� � � � � 8 �X� � � 4 ��� �X� � �4 ��� �X� � ��
 # 4 � � � � � 8 �-� � � 
 # P
	������ � _ �X� � � 4 ��� � _ �X� � �c� : D
If � 4 � � � ��A , then

� � �-� � � 4 � � �-� � �7
 : P
	���� � � � � $ �X� � � 4 � � � _ �X� � �4 ��� � _ �X� � ��� # 4 � � � � � $ �X� � ��� # D
If � �4 � � � � : , then

� � �-� � � 4 � � �-� � � 
 # P
	���
� � � � � $ �X� � � 4 � � � � � $ �-� � �c� # D

No other changes than those indicated above occur in �� and�� . In particular, no changes occur if � 4 � � � � : .
REMARK. The lemma can be readily generalized to a
description of changes of the vectors �U and �W , and to
dimensions

� � A . Note that there is one type of mutations
in the plane and there are two types (“convex” and “through
triangle”) in � � 8 . In � �9� such mutations can be classified by
a parameter � ,

� � � ���!� "n#�� . Details follow in the full
version.

We extract the implication of Lemma 2 relevant for our
purposes.
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Figure 3: Convex mutation (point of view on the positive side of � 2 �_ P 2 �G P 2 �8 � ).
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Figure 4: Through-triangle-mutation (seen from the positive side of � 2 �_ P 2 �G P 2 �8 � ).
Corollary 4 In a mutation through triangle with index � no
entry in the vector � � � P � _ P6D1D1D6P � � � � ��r � decreases.

Proof of Theorem 2. We show now that we can contin-
uously transform every point set into a set in convex posi-
tion such that ��� decreases for no

� � ��"�: � # . We know
that it suffices to ensure that the index � of each mutation
through triangle satisfies � � � �QK � ��"�: � # , or equiva-
lently, � 
 A � A ��"�: . For that purpose let us recall that every
point set � has a centerpoint & (not necessarily in � ) with
the property that any open halfspace that misses & contains
at most

A ��"): points from � (a consequence of Helly’s Theo-
rem, cf. [Ed]). First we observe that if & is a point in � , then
for � � ��"�: � # , neither & is on the positive side of a � -facet
nor & participates in a � -facet (in both cases we can find open
halfspaces disjoint from & which contain more than

A ��"):
points). That is, for

� � ��"): � # , � � �X�� � & � � 4 � � �-� �
and we can apply induction to prove the theorem (starting
with a set of 4 points).

Hence, we restrict ourselves to the case that & is not in� , and without loss of generality we assume that the origin� is a centerpoint of � . For a real number � � ; , we define� � � � Y 4 ���/2�� 2 ��� P � 4 '	� 	7� �$P � "�
 2�
 � � . Note that for
� � 4 '*),+ ')($* 
 2�
 , � � � � � 4 � , and for � _ 4 '�� 	 ')($* 
 2
 ,� � � _ � lies on a sphere of radius � _ , and thus it is in con-
vex position. The motion of � � � � for � from � � to � _ can
be visualized by a sphere initially containing � , and then
contracting the sphere while dragging points towards to the
origin as soon as they appear on the sphere. Throughout the
whole process, the origin stays a centerpoint of the moving
point set.

We can always perturb the set � (without changing � -
facets) in such a way that no two points lie on a common
line with & , and during the whole motion the set is either in
general position or there is a unique 4-tuple of points which
is coplanar (and in general position in its plane). As we have
learned, the mutations where the coplanar points are in con-
vex position do not affect �� . Now consider the case when a
point 2 moves through a triangle determined by three points

��P��)P��
. Point 2 is still in the interior of the contracting sphere,

otherwise it could not be be in the convex hull of three other
points. In fact, it is easily seen that 2 is on the same side of
the triangle spanned by � ��P��)P�� � as the origin before muta-
tion, and on the opposite side after mutation. Now we have
to recall the definition of a mutation through triangle and its
index � . This index was determined by the number of points
on the side of the triangle opposite to the point which is about
to move through the triangle. Hence, the index of our muta-
tion is the number � of points on the side of

� ���
opposite to2 before mutation, i.e., opposite to the origin. Consequently,

when 2 becomes coplanar with
��P��)P��

, there is an open halfs-
pace that misses the origin which contains these � points and2 P���P��)P�� . Because of the centerpoint property of the origin,� 
 : �QA ��"): , or � 
 A � A ��"�: as it was necessary to prove
for the monotonicity of ��� ,

� � ��"): � # . This concludes
the proof of the theorem.

4 Relation between � -sets and � -facets

Theorem 3 For a set � of � points in � ��8 we haveU _ 4 � � "n# 
 # P U � � _ 4 � � � 8 "$# 
 # P
	���U V 4 � � V � _ 
 � V ��G � "n# 
 #������R# � � � � � # D
Of course, we can also deduce how �� determines �U . The

corresponding relation of U V 4 � V � _ in the plane can be
easily proved. In � ��� , � � A , �� does not determine �U (see
full version). For the proof of the theorem, we could simply
observe the changes in �� and �U under continuous motion (see
remark after Lemma 2). Such a proof provides some insight
why such a relation does not generalize to � �f� , � � A . We
give here an alternative proof.� -Set polytope. We employ the notion of a � -set poly-
tope from [EVW]. Given a set � of � points and

��� � �� �R� , the � -set polytope of � is

� V 4 �1g
	�� �� � &')(�� 2�� � �
+ � �c3

! "
# P



where � * V � denotes the set of all subsets of � of cardinality� . The vertices of
� V are in one-to-one correspondence to

the � -sets of � . We briefly recapitulate the argument. A � -
set � can be separated from �?�y� by a hyperplane. That is,
there is a vector & and a real number � such that �(& P 2�� � �
for 2 � � and �(& P 2��M� � for 2 �o�\�Z� . Clearly, this
implies that �(& P [ '�(�� 2�� exceeds �(& P [ '�(�� 2�� for all � with� �4 � � � * V � and so [ ')(�� 2 is a vertex of

� V .
On the other hand, if [ ')(�� 2 is a vertex of

� V , then there
is a vector & such that � & P [ ')(�� 2�� exceeds � & P [ ')(�� 2�� for

all � with � �4 � � � * V � . Set � � 4 '�� 	 '�(�� �(& P 2�� . If �(& P�� � �
� � for

� � �?��� , then �(& P [ ')(�� 2������(& P [ ')(����
	 '������	��� 2�� ,
for 2 � a point in � with � & P 2 � � 4 � � ; a contradiction. Hence
�(& P�� �a� � � for all

� �Q� �S� and � can be separated from����� by a hyperplane with normal vector & .
Proof of Theorem 3. So far we have not referred to the
dimension of � . Now let us assume that � is a set in gen-
eral position in � � 8 . The 1-sets of � are the vertices of�Hg�	���� and the 0-facets of � are the facets of �1g
	��/� . Hence,� � 4 #$U _ � : follows directly from Euler’s relation, andU _ 4 � � "n# 
 # and U � � _ 4 � � � 8 "n# 
 # hold.

For # � � � � � # we want to show that the set of �i� �Z�@� -
and �-� � # � -facets of � are in one-to-one correspondence to
the facets of

� V which will entail the remaining relations.
Let � � _ P�� G P�� 8�� be a �-� ����� -facet of � with � the set of� � � points on its positive side. Let & be a vector and �

be a real number such that � & P�� _ � 4 �(& P�� G � 4 �(& P�� 8 � 4 � ,�(& P 2�� � � for 2 ��� , and �(& P 2�� ��� for 2 � � � ������ � _ P�� G P�� 8 � � . It follows that � ] 4 ��� � � ] � , 	 4 �JP # P{A are
the only sets � in � * V � which maximize � & P [ ')(�� 2�� . Con-
sequently, the points [ ')(���� 2 are vertices of a triangular
facet of

� V . Similarly, if � � _ P�� G P�� 8 � is a �-� � # � -facet of� with � the set of � � # points on its positive side, then
the sets � ] 4 ����� � � _ P�� G P�� 8 � � � � � ] � give rise to a facet
of

� V . A reverse argument shows that this mapping from�-� �?�@� - and �-� � # � -facets of � to facets of
� V is already

a bijection. In particular, all facets of
� V are triangular, and� V � _ 
 � V ��G 4 #nU V � : is implied by Euler’s relation.
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