Characterizing and Predicting Resource Demand by
Periodicity Mining
Artur Andrzejak*

Mehmet Ceyran'

Running Head: "Characterizing and Predicting Resource Demand”

4th May 2005

*Zuse Institute Berlin (ZIB), Takustrake 7, 14195 Berlin-Dahlem, Germany, andrzejak@zib.de
TZuse Institute Berlin (ZIB), Takustrake 7, 14195 Berlin-Dahlem, Germany, ceyran@zib.de

Abstract

We present algorithms for characterizing the demand behaviour of applications and
predicting demand by mining periodicities in historical data. Our algorithms are change-
adaptive, automatically adjusting to new regularities in demand patterns while maintaining
low algorithm running time. They are intended for applications in scientific computing
clusters, enterprise data centers, and Grid and Utility environments that exhibit periodical
behaviour and may benefit significantly from automation. A case study incorporating data
from an enterprise data center is used to evaluate the effectiveness of our technique.

Keywords: prediction, pattern mining, resource management, self-management

Disiributed Resources Management?

O8 Laver Indivichal Application Management =

| {other tools) |

Monitoring

Resource Manager |

-
R

Application Demand Characterization & Prediction =T

| App. Control

Demand Oplimizer =

Anomaly Detector _,/

Figure 1: Role of demand characterization and prediction in a framework for automated system
management

1 Introduction

Characterizing and predicting the demand of individual servers, clusters, or enterprise data
centers paves the way for automated management and scheduling of computing resources. On
the level of individual applications, demand tuning and anomaly detection are greatly facilitated
by increased knowledge of demand. Proactive scheduling and automated resource consolidation
processes can also benefit enormously from demand prediction. Such processes are becoming
increasingly important in reducing operating costs and simplifying the management of large
resource pools such as enterprise or utility data centers.

Periodicity-based characterization and prediction techniques work only if demand charac-
teristics observed in the past are likely to prevail in the future. The nature of the applications
in a system must be considered as a deciding factor in this assumption. Applications employed
in business or scientific domains are especially likely to exhibit repetitive demand behavior.
Examples of such resource consumers (i.e. applications or services) are business always-on ap-
plications or scientific computing applications. Our work and the results of this paper focus on
these types of applications and scenarios which involve them.

The contributions of this paper are as follows. We develop a set of methods for captur-
ing periodic regularities in the behavior of resource consumers. The major advantages of our
approach are change-adaptivity, low running time compared to known methods, and compact
representation of the mining results. Furthermore, we propose a computationally efficient tech-
nique for predicting future demand. Under the assumption that demand behaviour does not
change significantly in the future, this technique allows us to accurately predict short- and
long-term demand. We evaluate our approach with a case study using synthetic traces and
traces collected from data centers.

1.1 Applications for Self-Management of Systems

We envision demand characterization and prediction processes as part of a framework for auto-
mated management of applications and resources. While the foci of this paper are the specific
methods of characterization and predication and not the architecture of such a framework, it is
worth considering the benefits of a demand characterization and prediction tool in the context
of this framework.

Managing individual applications. The proposed periodicity mining approach provides
a compact characterization of demand with low computational cost. As illustrated in Figure 1,
periodicity mining results can be used by external components to tune and manage individual
applications. Two example components are shown in the figure: a demand optimizing module
and an anomaly detector.

A demand optimizing module usually has policy-driven goals such as preventing server
overload, keeping the demand curve constant or general reduction of the cumulative demand.
Data on demand characteristics greatly enhances such a tool by allowing it to take preventive
action, like preprocessing data before expected demand surges. This information might also
help to prevent demand oscillations caused by interactions between several applications.

An anomaly detector compares demand characteristics with actual behaviour for discovering
unusual situations, such as unexpected demand peaks or prolonged idle periods. Demand
may also be considered with other data in the automated detection of application or system
component breakdowns, or e.g. Denial of Service Attacks.

Managing distributed resources. Demand prediction capabilities enable proactive re-
source management in a distributed environment. In contrast to classical reactive resource
management, proactive management schedules the tasks or applications to resources in antic-
ipation of the expected demand surges or idle times. As a result, the number of hot-spots is
reduced and the degree of resource utilization increases.

In addition short-term scheduling, a tool for demand characterization and prediction might
also be used for automated "matching” of applications with complementary demand behaviour
for server consolidation - several consumers can use the same resource as long as the respec-
tive phases of high and low demand balance each other out. A study in [11] (using off-line
scheduling) confirms the high potential of this approach for Utility Computing and data center
environments.

Finally, data mined from historical traces can be used to automatically classify applications
into those with predictable behavior and those with less predictable demand characteristics.
The potential savings of resource sharing is directly proportional to the predictability of the
consumers using the resources. An application displaying less predictable behavior might re-
quire a dedicated resource to prevent overload or to satisfy a Service Level Agreement (SLA)
[12], even if the consumer’s average demand is low. Thus, the predictability level can consulted
in automated placement on dedicated resources, and might also be considered in the pricing of
a SLA.

1.2 Approach Details

Change-adaptivity. A key feature of our methods is their change-adaptivity. A mining
method with change-adaptivity favors recent demand behavior characteristics over older ones.
When making predictions based on historical data, the following trade-off must be consid-
ered: a large amount of historical (training) data enables more accurate prediction, but the
increased size of this data slows adaptability to new demand behavior, since older regularities
may “overwhelm” new (and thus more appropriate) patterns. We attempt to solve this problem
by weighting historical data according to "age”. Weighting the data in this fashion isolates
stationary behavioral patterns as more data becomes available, though new characteristics still

| Range top | 0.125 | 0.250 | 0.375 | 0.500 | 0.625 | 0.750 | 0.875 | 1.000 |
| Probability | 0.08 | 0.42 | 0.17 | 0.12 | 0.12 | 0.04 | 0.00 | 0.04 |

Table 1: A resource demand prediction represented by a probabilistic mass function (pmf)

dominate older ones, even if the former appear in only a fraction of the data.

Periodicity mining. To capture periodic regularities, we divide the signal amplitude
into ranges, which we call levels. For each level we record the events of a signal amplitude
belonging to this level. This sequence of events (differing only in their timestamps) is subject
to several mining steps. The most important of these steps focuses on mining periodicities
and the corresponding phase shifts. For mining periodicities, we extend an algorithm by Ma
and HELLERSTEIN [9] to efficiently find statistically significant periodicities yet ensure change-
adaptivity.

Predicting demand. The second part of this paper focuses on the prediction of application
demand. Given a time instant in the future (relative to the historical data), we can compute
a probability mass function (pmf) [1] of the demand. This type of forecast approximates the
probability distribution of the demand by describing the probability that it is within r, for each
of a finite number of demand value intervals r. Table 1 shows an example forecasted pmf for the
processing demand of an application in a business data center. The demand is normalized to
the interval [0.0,1.0]. The advantages of this approach are low running time and the fact that
the predictions can reach further into the future without compromising accuracy (assuming the
behavior profile of a consumer does not change). These are substantial advantages compared
to currently employed methods such as ARIMA or ARFIMA modeling discussed in Section 2.

The body of the paper is organized as follows. In Section 2 we discuss related work. Section
3 is devoted to mining characteristics of repetitive demand behavior. We describe a method
of using such statistics to generate predicting pmf’s in Section 4. A case study is discussed in
Section 5. Finally, we conclude with a summary in Section 6.

2 Related Work

Periodicity Mining. One traditional approach to detecting periodicities is based on an analy-
sis of the signal frequency spectrum obtained by Fast Fourier Transforms (FFT). The unmod-
ified analysis has the disadvantage that frequency changes over time cannot be detected, a
problem that can be remedied by applying Short-term Fourier Transform and wavelet analysis
[14]. The downside of the Short-term FT is the difficulty to choose the size of a "sliding window”
where FF'Ts are applied.

In the field of data mining there has been a considerable interest in mining periodic or
partially periodic patterns [6], [9]. Targets of these studies include database mining or web log
analysis. An interesting extension of this work is mining of hierarchical patterns [15]. This
approach could also enrich our model for describing periodicity. However, hierarchical pattern
mining might also lead to spurious results since more complex patterns are less likely to reoccur
in the future.

Demand Prediction. Work on resource demand prediction includes calendar methods [7],
also used in [12]. Here a fixed period (e.g. 1 day) is assumed, and a probabilistic profile for
each chunk of the period (e.g. for 1pm-2pm, 2pm-3pm etc.) is computed. One drawback of
these methods is a lack of flexibility when several periodicities are present. Also, the dominant
periodicity is determined in an arbitrary way.

More advanced approaches to demand prediction borrow from econometrics and use time
series models based on auto-regression and moving averages such as ARIMA and ARFIMA
[5], [13]. The most comprehensive study of this technique was conducted by DINDA [4], who
also developed an extensible toolkit for resource prediction in distributed systems [3] that
implements the above-mentioned methods as well as wavelet-based analysis tools [14]. These
approaches yield good short-time (around 30 samples) prediction, but fail to capture longer-term
regularities. This is due to the fact that the error interval for these methods grows relatively
quickly the further a prediction goes beyond the end of the data. Moreover, to capture a
periodicity of a seasonal behavior of size 7, the auto-regression depth must be at least 7. Two
problems arise here: first, one must know the expected period length in advance. Second, the
computational time increases drastically with the depth of the auto-regression. In contrast, our
approach has the advantage that long-term predictions do not necessarily have larger error than
shorter-term ones. Furthermore, the observed running time is linear in the number of input
samples with a low constant, and does not depend on the size of mined periodicities.

Further studies of demand prediction have concentrated on the power generation sector [2]
and network traffic management [10].

3 Change-Adaptive Periodicity Mining

During the preprocessing phase, the input signal is split into event sequences corresponding to
subranges of its amplitude (level). Each sequence is then converted into multiple series of con-
tiguous events (segments). The goal of the subsequent mining phase is to identify (sub)sequences
of segments with statistically significant periodicities for each level. Furthermore, we want to
extract enough information about these periodic components to be able to extrapolate their
behavior beyond the known data.

Several mining steps are necessary to achieve this goal. First, a change-adaptive algorithm
mines segment periodicities at each level. The resulting periodicities serve as the basis for
deriving further characteristics of a sequence. The efficient and change-adaptive methods pre-
sented in this paper are then used to compute the phase shift of a periodic segment sequence
(in relation to a sequence with "peak” at Os), and the mean and variance of the segment widths.

3.1 Input Signal and Preprocessing

Our input data is a single time series, defined as a sequence of pairs (timestamp, value) ordered
by timestamps. We assume that the timestamps are equidistant and write DD for the time
difference of two consecutive timestamps. This assumption is not essential to our algorithm,
but simplifies the implementation by making it robust in the presence of occasional outliers.
The value of a time series is assumed to be a function of the demand of some resource sampled

Figure 2: Input signal with levels and its conversion to four sequences of segments (x-axis:
time, y-axis: signal value)

each D timestamps (D is called granularity). Examples of this function are CPU utilization
averaged over a given time period D, or the demand of the resource at the moment of sampling.
In general, we refer to the input time series as a signal, to emphasize the fact that the methods
presented here are applicable to any kind of data. The only restriction is that the values in the
time series lie in a specific, limited range.

In the preprocessing phase, we subdivide this range of values into L disjoint intervals called
levels. While these levels have equal size in the current implementation, ranges with different
sizes could be used as well. A value v of the pair (timestamp, value) is mapped to a level such
that v is in the interval of this level. For each level & we obtain the sequence of the timestamps
corresponding to the occurrences of values within k& (again ordered by timestamps). Thus we
transform our input signal into L sequences of (equal) atomic events. The choice of the number
of levels depends on the desired accuracy and the nature of the input data. For example, we
might choose 64 levels for the computational demand of a 16 CPU machine, and 8 levels for a
dual processor machine.

The sequence of atomic events in a level is further decomposed into segments. Segments
are contiguous sequences of timestamps such that the difference of adjacent timestamps is not
larger than a predefined number k£ D, with k£ some small integer greater than 0. The goal is
to cluster together consecutive events while tolerating £ — 1 "drop-outs" within a segment. A
segment is uniquely specified by its width (the difference end-begin) and its center ((begin +
end)/2). Figure 2 shows an input signal, four levels, and the obtained sequences of segments
(each represented by a grey box).

For the following sections we require formal definitions of the concepts described above.
Consider a sequence of segment centers eg, eq, ... such that the timestamp e;.t of e; is i7 + s,
where 7 and s are non-negative numbers with s < 7. For convenience, we refer to a segment
center e also as an event. We call 7 the periodicity of the sequence, and s its phase shift. For a
given 7 and s, we call a timestamp i7 + s a hit point.

3.2 Periodicity Mining

The following section presents a method for discovering statistically significant periodicities of
segments for a given level. The method is based on the algorithm presented in [9]. We extend
it by adding change-adaptability. Our input is the sequence ey, es, ..., of N 41 segment centers
of a single level with corresponding timestamps e;.t,es.2,

Algorithm by MA and HELLERSTEIN. We start by describing the original algorithm
published in [9]. It consists of three processing phases:

1. First, the set of potential "raw” periodicities is computed. For each pair of consecutive
events e; and e;_j, this is the difference 7 = e,.t — e¢;_1.t (inter-arrival time). Then a
counter (', for this particular 7 is created and initialized to 1 (if C'. did not exist), or
incremented by 1 (if C'; did exist). The output of this phase is the set of observed 7’s
(potential periodicities) together with their respective counters .

2. Second, the counters (', are adjusted to incorporate the tolerance ¢ for periodicities. This
parameter is given as input. In the beginning, all (s (together with the corresponding
7's) are in the candidate set, and the result set is empty. We repeat the following greedy
procedure until the candidate set becomes empty. For every 7 in the candidate set all
counters v for 7/ within an interval [7 — §, 7 + J] are added together to a new counter
C:s. Then the largest ;5 (and the corresponding 7) are moved to the result set, and all
C!s and their 7’s which contributed to (. s are removed from the candidate set.

3. Finally, the pairs (7, C;) in the result set of phase 2 are checked for statistical significance.
We discard 7 if (', < (”; for a threshold (! whose computation is stated below. The
remaining values of 7 constitute the set of the statistically significant periodicities, the
output of the algorithm in [9].

C! is computed as follows. Let S be a sequence of events with random inter-arrival time (time
between two consecutive events), such that the mean inter-arrival time in S is the same as the
mean inter-arrival time in the mined sequence of events. Let p, be the probability that the
inter-arrival time between two events in S lies in the interval |7 — §,7 + d]. It is obvious that
Np, is the expected number of instances of inter-arrival times in the interval |7 — 0,7 + ¢] in
S, and the variance of this number is Np, (1 — p,). Recall that NV + 1 is the number of segment
centers in the whole sequence.

Intuitively, the larger C'. is in relation to Np,, the less likely that the periodicity 7 is due
to random phenomena only. We can turn this difference into statistical significance by using
chi-square statistics [1]:

N (CT_—]W (1)

" Np; (1 —pr) ‘
The value of x? is the normalized deviation from the distribution of the sequence S. Depending
on the degrees of freedom (one in our case), the value of \? determines the probability p.,,
that the computed value of . or larger occurs in a sequence S (i.e. the value of C is due
to randomness only). For example, for p.,, = 0.05 we have y? = 3.841, and for p,,, = 0.005

6

we have y2 = 7.879. Because p.,, (the probability that we accept a periodicity that is due to
random phenomena only) is inversely proportional to X2, the corresponding C, must be higher
in order to attain an acceptable 7. By choosing p.,,, substituting the corresponding value for
X2 and solving (1) for C, we obtain the desired threshold C’ = C',.

We still need to compute the probability p,. With an increasing number of events the
distribution of inter-arrival times in S approaches the exponential distribution. With A = N/T
being the mean inter-arrival time of S (where T is the time span of this sequence) and assuming
that ¢ /7 is small, it holds p, = exp(—A(7 — 9)) — exp(—=A(7 + 9)).

Incorporating change-adaptivity. Instead of allowing each occurrence of the inter-
arrival time 7 = e;.t — e;_1.t to make the same contribution to C';, we weight each occurrence
of the inter-arrival time 7. For an event e; with the difference e;.t — e;,_1.t = 7 let

w; = wle;) = 2=/ Th (2)

be the weight of e;. Here a is the difference between the last timestamp in the input time series
and e;.t (the "age” of e;), and T}, is a parameter specified in the input. Note that if the age of
e; is kTy,, then w(e;) = 27% and so we call T}, the half-life of the weight. For a given 7, the role
of C'. is then replaced by the sum of weights

W, = 3 wle;), (3)

e;.t—e;_1.t€[T—38,7+0]

i.e. this value is computed in step 1 for each observed 7.

This approach can be used in steps 1 and 2 of the above algorithm without essential changes.
However, in step 3 we need a new schema to compute the threshold 7, now called W/. The
idea is to derive W/ from the mean and variance of weights in the sequence S of events with
random inter-arrival times (defined above).

Let e = ¢; be an event in S. We define X ., as a random variable (r.v.) whose value is
w(e;) if e;.t —e; 1.t € |7 — 0,7 + J], and 0 otherwise. With the probability p, as above, the
expectation E[X, .| is w(e;)p,, and its variance V[X, .| is w?(e;)p,, as X, ., has a binomial
distribution. Let X, be the sum of random variables X, ., for the whole sequence S. It is not
hard to see that for a specific 7 the value of W, in (3) averaged over many random sequences
S approaches F[X,|. The value of F[X,] is p, 2N, w(e;) since the expectation is additive. In
order to apply chi-square statistics, we also need to know the variance V[X,|. By observing
that the events in S are independent, we obtain

N N
VXA =D VIXre] = p-(1 = pr) Y w(es).
i1 i=1
Now we can use the relation)
s (Wr—E[X5])
Xz VIX,) (4)

We obtain the threshold W’ = W, by choosing the desired p.,, substituting the corresponding
value for y2 and solving (4) for W, .

The problem of efficiently computing the sums >V | w(e;) for expectation and Y, w?(e;)
for variance of X, remains. We could generate a sequence S with (pseudo-)random inter-arrival

7

times, and the same mean inter-arrival time as that in the mined sequence. However, we can
also approximate the above sums by the corresponding sums computed over non-degenerate
(in the sense of non almost constant) input sequences, for the following reasons. First, if the
mean inter-arrival time is small compared to T, (which is the case), then small deviations of
the timestamp values of e; produce only a negligible change in w(e;). Second, if the events
in the input sequence are equally spread over its time span (as in the case of non-degenerate
sequences), then the weights of the ith events will be similar in both an input sequence and a
sequence S. Summarizing, the above sums can be substituted by corresponding sums over the
input sequence without essential errors.

The change-adaptive algorithm described above might output several statistically significant
periodicities for an event sequence associated with a level. For the purposes of the prediction
algorithm from Section 4 only one of these periodicities is necessary. We select it by comparing
the ratios W, /W!, and taking the 7 with the highest ratio as the dominant periodicity of the
respective level.

3.3 Characterizing Segment Sequences

The periodic behavior of a sequence of events is not completely characterized by its periodicity.
In order to "replay” a sequence of segments as defined in Section 3.1, we need to determine the
phase shift of the sequence of the segment centers (as compared to a sequence with a segment
center at 0 mod 7). Furthermore it is necessary to characterize the segment widths in a change-
adaptive way, see Figure 3. We must also compute the probability that a hit point determined
by the computed periodicity and phase shift actually occurs within a segment of the training
sequence.

Computing phase shift. Recall that in an ideal sequence of segment centers with peri-
odicity 7, the phase shift is the remainder of the division of any timestamp by 7. However, the
real sequence might have several subsequences with periodicity 7 but different phase shifts. In
extending the concept of change-adaptivity, we define the dominant phase shift s as the phase
shift of the subsequence with periodicity 7 which has the largest sum of weights (defined by
(2)) of its events.

We compute the dominant phase in a single iteration over the sequence. We use a dictionary
Dic with keys being possible phase shifts. For each segment we first check whether the segment
width allows the segment center e to be in a sequence of periodicity 7. If yes, we compute the
remainder of s = e.t mod 7 and add the weight w(e) to the entry under the key s’ in Dic.
When the iteration is complete, the value for key s’ in Dic is the sum of weights of events for
the subsequence with phase shift s’. The key s with the largest value can then be found in
logarithmic time in the size of Dic if a tree data structure is used for Dic.

Characterizing segment widths. After the above computation, the sequence of segment
centers is characterized by 7 and s. The computation of the change-adaptive mean m, and
variance var,, of the segment widths is executed as follows. For each segment center we check
whether its width allows the segment to be in a sequence of periodicity . If this is the case,
we check whether the timestamp ¢ of the segment center is within distance ¢ from a hit point
it + s. If this also holds and the hit point i7 + s has not been "used” before (this could happen
if several segment centers are within § of this hit point), the focus segment contributes to the

Lad

T m,,

Figure 3: The periodicity characteristics captured for level 1 (x-axis: time, y-axis: signal value)

mean and the variance of the widths.

To ensure change-adaptability we use the following schema for computing mean and vari-
ance. We treat the width of a segment as a discrete random variable X. Assuming that each
segment has a unique width, the per-event probability p(e) of X attaining the value v (the width
of a segment with center e.t) is defined as the quotient w(e) divided by the sum of the weights
of all segment centers that contributed to the computation (here w(e) is again determined by
(2)). Then the mean m,, is computed according to the standard formula for the expectation of
arv. (ie. m, = F[X]), and var,, by the standard formula of a variance of a r.v., var,, = V|[X].

Computing hit probability. The values of r, s, m,, and var,, give us a model of a periodic
subsequence of segments contained in the input data. However, the input data might produce
fewer segments than the model predicts, see Figure 3. To measure the accuracy of the model,
we introduce the hit probability py,, defined as follows. Let w;,., be the sum of weights w(e)
defined by (2) over all segment centers e that occur in the “ideal” segment sequence described
by the model. Let w,. be the sum of weights w(e) over those segment centers e that fulfill
two conditions: 1) e.t is within distance ¢ from a hit point i7 + s prescribed by the model
parameters, and 2) the segment corresponding to e has a width that allows this segment to be
in a sequence of periodicity 7. Then the hit probability is the ratio

Pr = wact/wmal’-

The value of w, is computed by looping over all segment centers and applying the same
selection process as that used in computing width characteristics. To compute w,,,., notice
that the last segment prescribed by the model has an approximate weight of 1 (since its age is
almost 0). Furthermore, we obtain the (i — 1)th weight w;_; by multiplying the ith weight w;
by g = 277/T», If z 4 1 is the number of segments determined by the model, then the value of

. . . ; z+1_
Wnae 18 given by the geometric sum formula wp,e, = 37 (¢* = 4 o 1

3.4 Running Time

The running time of the periodicity mining algorithm is dominated by step 2 (adjusting the
periodicities according to the tolerance ¢). A rough analysis shows that the worst-case running

9

time is O(N?®) (N being the number of segments in a level). However, in all practical cases
computing a single tolerance-adjusted 7 requires on average 2J/N steps, and the final number
of adjusted 7’s is small compared to N. Therefore, the observed running time was O(N).

Mining the phase shift takes at most N log NV steps, while computing width characteristics
and the hit probability can be done in linear time.

4 Predicting Probabilistic Profiles

The computation of the probability mass function (pmf) of future demand discussed in this
Section is based on the statistics derived in Section 3. The general idea is to determine for a
given future instant ¢ the level & that is most likely to have a segment covering ¢ (as predicted
by the periodicity statistics). We then return the pre-computed pmf characterizing the demand
behavior within the segments predicted for k. In Figure 3 the instant ¢ is covered by a segment
of level 1, and so we would return the pmf computed over all segments determined by the
periodicity model for level 1 as the result for .

We will describe the latter pmf (called kit pmf) in more detail. Consider a level featuring a
periodicity. For a given timestamp ¢ we can easily compute whether ¢ might be within a segment
belonging to the captured periodic sequence (i.e. if ¢ is in the interval [i1 + s — My, iT + s+ 1M,
for some integer i), or if this is unlikely. In a former case a [change-adaptive| hit pmf of the
input signal computed over the intervals [iT + s — m,,, iT + s+ m,,] is likely to correctly describe
the probability distribution of the demand at the instant specified by ¢ (here i takes on values
such that all intervals of the above form in the input data are covered). In Figure 3 the hit pmf
for level 1 might be 0.7, 0.1, 0.1, 0.1 (probability for levels 1,...,4 respectively).

To resolve the question of which hit pmf is most likely to capture the probability distribution
at instant ¢ (if any at all), we introduce a hit indicator for each level. The hit indicator’s value
is 1.0 if ¢ is within the interval |iT + s — m,,, iT + s + m,,| for some integer i, and it decreases to
0.0 beyond the limits of this interval according to the Normal distribution. After calculating
the hit indicators for all levels that feature periodicity, we choose the hit pmf of the level with
the highest hit indicator value as the representative description of the demand profile for the
instant ¢ (ties are resolved by preferring levels with larger hit probability p.). In Figure 3 the
hit indicator for level 1 is obviously 1.0, since ¢ is within the segment prescribed by the model.
If the hit indicators of other levels were less than 1.0, the hit pmf of level 1 would constitute
the prediction result.

There might often be no level with a hit indicator above 0.0. In this situation, the best bet
is to use a [change-adaptive] pmf computed over the whole input data (called histogram pmf)
as the pmf for the requested instant. If the largest hit indicator for ¢ has a value v between
0.0 and 1.0, we use a linear combination of the appropriate hit pmf and the histogram pmf
weighted by v.

4.1 Histogram Pmf and Hit Pmf

In the standard (non change-adaptive) version, the histogram pmf is a discrete random variable
which takes as values the midpoints of the signal amplitude ranges corresponding to the levels

10

(e.g. 0.125, 0.375, 0.625 and 0.875 for four levels subdividing [0,1]). The probability corre-
sponding to the level & is the number of sampled points (events) belonging to level k divided
by the total number of the sampled points (over all levels). Note that we use the "raw” sampled
points here (or pairs (timestamp, value) defined in Section 3.1) and not the segments.

To make this definition include change-adaptation, we simply substitute the count of a
sampled point by its weight (defined by (2)). In other words, the probability corresponding to
a level k is the sum of weights of the sampled points falling into level k& divided by the sum of
weights of all sampled points.

The hit pmf for a level k is computed in the following way. Given a periodicity model for
level £ = 1,..., L with parameters 7, s and m,,, we scan all sampled points and check whether
the timestamp of such a point e falls into the interval it + s —my,, iT + s +m,,]| for some integer
i. If this is the case, we add the weight w(e) to the sum s, for the level &’ to which e belongs.
After the scan, the probability for a level &' is s, divided by the sum of weights of all used
points (i.e. divided by the sum s; + ...+ sp).

4.2 Hit Indicator and Resulting Pmf

The computation of the hit indicator for a level is relatively simple. If a level has no detected
periodicity, then the returned value is 0.0. If a level has a periodicity we check whether the
input ¢ is in the interval [iT + s — my, it + s + m,| for an integer 7. If this is the case, the
value of the hit indicator is 1. Otherwise, we find an integer ¢ such that one of the numbers
IT + 8 — My, T + 5 + my, say b, is closest to . The value of the hit indicator is then the
normalized value of the probability density function of the Normal distribution with mean b
and variance var,,. The normalization factor is /27 (var,,) so that the output is 1.0 for ¢ = b.

To obtain the final result, we find the level with the highest indicator value v. If v = 1.0,
we return the hit pmf of the corresponding level, and if v = 0.0 then the histogram pmf is
returned. Otherwise the result is a linear combination between a hit pmf (weighted by v) and
the histogram pmf (weighted by 1 — v).

4.3 Running Time

The execution of the algorithm is split into two steps, preprocessing and an on-line pmf com-
putation for a requested time instant ¢. In the preprocessing step we first compute periodicity
statistics for each level, as described in Section 3. The worst-case running time for this com-
putation is O(N?) per level, where N is the number of segments in the respective levels. As
noted above, the observed average time is O(/N). The number of segments is usually much less
than the number of sampled points, and the levels have disjunct sets of segments, so in practice
the complete periodicity mining requires linear time in the number of samples n. After com-
puting periodicity statistics we calculate the histogram pmf (one per trace) and the hit pmf for
each level featuring periodicity. Each pmf computation requires exactly n steps, so that this
processing part requires at most n(L + 1) steps. In real time this usually takes longer than the
periodicity mining.

Given a request to compute a pmf for a time instant ¢, we need to compute the hit indica-
tors for all levels featuring periodicity, and output the resulting pmf according to the schema

11

50 ———————————— 50
5 40 g 40
530t 530 ¢
-} -}
6 20 6 20
10 ¢ 10 ¢

0 : : ' : 0 : : : : : :

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

(a) (b)
Figure 4: Weekly traces of data set B

described in the beginning of this section. This obviously takes only O(L) time.

5 Evaluation

In this section we present the results of an evaluation of our algorithm using real and synthetic
data sets. Each data set has been split into a training part (first 80% of the samples) and a
test part. We have the periodicity mining tolerance 6 depend on the candidate periodicity 7
by introducing the relative tolerance ¢, such that ¢ = 70,. If not otherwise stated, this value
was set to 0, = 0.1 and the value of p.,, to 0.01 for the whole study.

5.1 Systems Under Study

In order to evaluate our approach we employ a set of synthetic data (Data Set A) and a set of
real CPU utilization data (Data Set B).

Data Set A. The synthetic data set has been used for debugging purposes and for testing
the change-adaptive features. We have incorporated two classes of signals. A sin-class signal
has as the underlying function f(z) = abs(sin(227 /7)), where 7 is the desired periodicity. The
pulse-class signal is a rectangular signal of periodicity 7 which alternates between 0.0 and 1.0
and has the desired pulse width w (i.e. in each period the fraction w of the period has amplitude
1 and the remainder has amplitude 0). The generated signal had timestamps from 0 to 2592000
seconds (30 days) and granularity D = 300.

Both classes of signals were tweaked to make them less regular. With probability p, we
added a random value from |0, 1| to a sample and truncated the sum to 1. Furthermore, the
first part of the signal (fraction i of the whole length) could have a different periodicity and
pulse width (for the pulse-class) than the remaining part.

Data Set B. This set contains CPU utilization information from 41 servers in a data center.
This information was collected using HP MeasureWare (Openview Performance Agent) between
July 29th, 2001 and September 2nd, 2001 and it has been used in the study in [11]. We treat
each server as an application (demand consumer). This approach is dictated by the fact that in
most data centers resource sharing is uncommon and so each application has a dedicated server.

12

¢ 8 * max
7 [: mean
c 51 c 51 S
S 44 8 44
@D 3 » g
2 - o |
1 - 1 M
0 . . e il . . . : 0 . . :
0 5 10 15 20 25 30 35 40 0 5 10 15
(a) - by server (b) - by level

Figure 5: Span of periodicities in data set B ((a) - by server, (b) - by level)

Furthermore, measuring demand of individual applications would require instrumentation of the
operating system, something which is hardly possible in a production data center.

The time series is a trace of the average CPU utilization across all CPUs in the server for
a five minute interval (D = 300). The servers exhibit different CPU demand characteristics,
which has consequences on the predictability of the signal. Figure 4 plots the CPU utilization
of two exemplary servers, each over a one week period. Figure 4(a) shows a server with clear
periodic behavior. The utilization is similar for the other weeks of data.

While the demand of the server in Figure 4(a) is seemingly predictable, Figure 4(b) shows
an almost random demand behavior. Another group of five servers showed a very different
behavior in the last 1/4th of the trace data than in the first part. We removed these servers
from the prediction testing.

5.2 Periodicity Mining Results

For the data set A we conducted tests to examine change-adaptivity in our algorithm. The
number of levels was set to . = 8 and & to 0.5. We used 71 = 4800 and w; = 0.2 (for pulse)
as periodicity and width, resp. for the first part (share h) of the signal, and = = 6600 and
wy = 0.5 as the respective values for the second part. For both the sin-class and the pulse-class
signal we varied the half-life 7}, looking at the values of 16 days and 4 days. For T}, = 4 days,
newer periodic behavior (7 = 6600 and m,, = 0.5) is captured correctly and the hit probability
pp, reaches high values, but this is not the case for 7, = 16 days. This confirms that a non-
adaptive approach (i.e. Tj = o0) would be not able to capture the newer periodic behavior in
this data set (unless only the most recent part of the trace would be used for training). Quality
results are still produced up to the noise level of p, = 0.1 for the sin-class and up to 0.15 for
the pulse-class. The detailed result values for this study are left out due to space limits.

We performed periodicity mining for the data set B using the parameters 7}, = 7 days and
32 levels. Of the 41 traces 36 featured periodicity in at least one level. The total number
of levels with periodicities was 356. The most common values for 7 were 15 minutes and 20
minutes. Relatively common were 1 hour, 1 day, and there are two occurrences of a 1 week
periodicity. Altogether, the detected periodicities range from 15 minutes to 1 week.

13

55 1.98
5 4
45 | 1.92 1
s oap] . 1.86 1
weoTs Y18
2.5 1]
> | 1.74
1.5 - - - - : - 1.68 : . : .
0 20 40 60 80 100 120 140 0.1 1 10 100 1000 10000
(a) - number of levels (b) - halflife (h)
1.776 1.768
1.772 A 1.766
= 1.768 = 1 764
1764 W
176 | 1.762
1.756 - - - - - 1.76 - - - - -
1e-6 1e-5 1e-4 1e-3 0.01 0.1 1 0 0.05 01 015 02 025 03
(c) - relative tolerance (d) - probability

Figure 6: Influence of parameter values on the sum of the mean absolute errors over 31 servers
of data set B ((a) - L, (b) - Th, (¢) - 0, (d) - Perr)

In order to justify the change-adaptive approach we investigated how periodicities change
within the data set B. We divided each trace into 8 sections of equal time lengths (using full
trace, i.e. 100% of samples), and mined each section using . = 16 and T}, = oo (no change
adaptivity). For each trace and each level we then counted the section span of periodicities:
the number of consecutive sections having the same periodicity (in a particular level and trace).
Intuitively, low span values indicate the need for change-adaptivity, since the periodicities do
not last long. Figure 5(a) shows the means and maxima of spans over all 16 levels (by servers).
For most servers, the section span average is below 2.0, or 1/4th of the trace duration, a value
which affirms the positive impact of change-adaptivity for this data set. Figure 5(b) displays
the means and maxima over servers (by levels). The span decreases with higher level index,
which reflects the fact that the occurrences of the signal and corresponding periodic patterns
are rare at higher values.

5.3 Prediction Testing

The test data cannot be directly compared with the predicted pmf’s. We use two approaches
to derive a value from a pmf: 1) we compute an expected value (ezp), or 2) we take the median
of a range belonging to a level with highest probability in the pmf (topP).

5.3.1 Parameter Sensitivity Analysis

We study the effects of essential parameters on the prediction accuracy using 31 servers from
the data set B (servers having any periodicities and not being among the excluded five). The

14

100 100
() ()
> 75 > 75
3 3
S 50 S 50
S S
= 25| 25|
0 - - 0
2075000 2080000 2075000 2080000

(@) (b)

Figure 7: Prediction for synthetic data with T}, = 16d (a) and with T, = 4d (b) (signal: solid,
predicted pmf: the level with highest probability is dashed, the expectation is dotted; x-axis is
time)

variable parameters are: the number of levels L, the half-life T}, the relative tolerance o,,
and the probability p.,, that an accepted periodicity is due to a random phenomena only.
We change one parameter at a time, while keeping the other three at default values. These
values are [, = 128, half-life T}, = 28 days, ¢, = 0.1, and p.,, = 0.01. The metrics for the
prediction error Err are the sum of the mean absolute errors between the true signal values
and the expectation of the predicted pmf (exp) over all 31 servers. Using maximum of the mean
absolute error instead of the sum yields similar results.

The number of levels . has the largest influence on accuracy, as shown in Figure 6(a).
Prediction accuracy increases with I, but saturates at values greater than 10. A well-suited
value for data set B seems to be L = 32, which requires little memory for overhead data while
offering reasonable prediction quality.

The influence of the half-life T}, on accuracy is worth noting, see Figure 6(b). Large values
increase the error due to lack of adaptivity. However, too small a value for half-life impedes
detection of longer-term periodicities, thus decreasing the accuracy. Finding a suitable value
for T}, obviously depends on the "stability” of the periodic patterns and in most cases we need
to take into account the idiosyncrasies of the application scenario. For data set B, T, = 2 days
produces the fewest errors.

As depicted by Figure 6(c) and (d), the relative tolerance J, and the probability p.,. have
marginal influence on the prediction accuracy and do not show any conclusive behaviour.

5.3.2 Prediction Results

Data Set A. Figure 7 illustrates the effect of change-adaptivity for the synthetic trace of type
sin mined with half-life 7}, = 16 days and T}, = 4 days (same scenario as in the periodicity mining
experiment). Clearly a smaller half-life value (right figure) yields a more correct prediction due
to adjustment to more recent periodicity, thus affirming our change-adaptivity approach.
Data Set B. Figure 8 shows prediction results for two typical servers. 8 levels are included
on the left side, with 32 levels on the right. With an increasing number of levels the prediction

15

37.5 37.5
[0)] [0)]
(o)) (o))
© ©
(%] (%]
3 N T V| N A VU W
e | s | s | i |
P P
12.5 12.5
999157500 999167500 999157500 999167500
62.5 I 62.5 I
[0)] [0)]
P LA AT LA A AL Al
(%] (%]
§ oA A I TN TR TUR TR AN
> 375 o sy 2 e e
(@] (@]
R \ R
12.5 v 12.5 v
999220000 999230000 999220000 999230000

Figure 8: Prediction results for two server traces, with 8 levels (left) and 32 levels (right) each
(signal: solid; predicted pmf: the level with highest probability is dashed, the expectation is
dotted; x-axis is time)

follows the signal more closely, and more periodicities are discovered. As the expectation tends
to average out the probabilities in a pmf, it takes less extreme values than the topP.

In Figure 9 we compare the prediction errors of our approach (a) with the same approach
without change-adaptivity and (b) with the prediction based on the histogram-pmf explained
below. We measure prediction errors in terms of the relative improvement of our method against
the alternative. The relative improvement is computed according to the formula 100 (errqy, —
ErT period) | €T period, Where errqy is the mean absolute error between the signal and the prediction
based on the alternative method, and err,,.q¢ is the mean absolute error between the signal and
the periodicity-based prediction. Thus, positive values illustrate the advantage of our method.

Two variations were considered. The first variation measures errors only in cases when the
signal is larger than the predicted value (ut). This corresponds to a situation in which the
consumer gets less resources than needed, so that an under-provisioning occurs. This situations
are more problematic since under-provisioning might lead to e.g. violation of Service Level
Agreements or higher response times. The other variation measures the full error (fd), i.e.
both over-provisioning and under-provisioning cases, and is more conservative.

The prediction approach based on histogram-pmf computes first the histogram-pmf of the
signal (see Section 4.1). Then it derives the expected value (exp) and the level with highest
probability (topP) from this pmf and uses them as the prediction result in all test cases,
irrespective of the future time ¢ of the prediction. This method represents a simple, yet change-
adaptive prediction technique which we use as baseline for evaluating the prediction accuracy
of our method.

16

| utexp —— 60 utexp ——
400 1 yttopP ut.topP
agp 4 fdexp —— 40 1 fdexp ——
1 fd.topP T fd.topP
sl | ol |
- ‘ o 1l T | : |'||["|' W,
0 4 pkep ,._..Ilillla"_ :|.|:1__:J I P Ty
-100 " , v T T v -40 g d T T T y
0 5 10 15 20 25 30 0 5 10 15 20 25 30

(@) (b)

Figure 9: Relative improvement (in %) of the periodicity-based prediction compared to non-
adaptive version (a) and the histogram-based prediction (b) for 31 server traces (x-axis is the
server index)

We use T, = 2 days and 32 levels as the parameter values. The merits of change-adaptivity
of our method are shown in Figure 9(a). There is a very large accuracy improvement in several
cases (up to 370%), however there are few instances with a small or middle accuracy degradation.
The comparison against the (change-adaptive) histogram-pmf prediction in Figure 9(b) features
a lot of cases with small improvement, but instances with large improvement are lacking (only
in one case the improvement of ut.top exceeds 274% and is not shown in the diagram).

As for computational efficiency, the periodicity mining and prediction testing for all 31
servers (with approximately 2000 prediction tests in each case) required less than 130 seconds
on a 2.5 GHz laptop with Java 1.5 (Sun JVM, Windows XP, Pentium 4).

6 Summary and Conclusions

We have described a change-adaptive method for characterizing the periodic behaviour in de-
mand data, and derived a technique for long and short-term prediction of the demand. We
placed special emphasis on low running time and compact output in the design of these algo-
rithms, which are intended for use in tools for system self-management.

Our evaluation of the methods using both synthetic and data center traces clearly demon-
strates the merits of the change-adaptive approach. Predictive accuracy on these traces is
satisfactory, and the visual analysis shows that the predicted pmf’s nicely capture trace charac-
teristics. A more advanced test would utilize the predicted pmf as input to a scheduler such as
that described in [11] and evaluate the obtained placements against ideal applications-to-servers
mappings.

We intend to extend our work in several directions. We plan to combine our implementation
with a GA-based scheduler to obtain an automated, proactive resource consolidation toolkit. We
are also considering incorporating prediction techniques such as ARIMA to further improve the
accuracy of our algorithm in short-term prediction. Further work can be done on defining non-
equidistant levels. Implementation and comparison of alternative characterisation/prediction

17

methods such as wavelet analysis is also planned. Finally, the characterization of periodic
demand behaviour produced by our algorithms can serve as a basis for automated anomaly
detection.

7 Acknowledgments

We would like to thank Minor Gordon and Ulf Hermann, ZIB Berlin, for help with editing this
manuscript. Special thanks go to Jerry Rolia and Martin Arlitt from HP Labs Palo Alto for
making the data set B available to us.

References

[1] G. Casella and R. L. Berger. Statistical Inference, 2nd edition, Brooks Cole, 2001.

[2] D. Dentscheva, W. Rémisch. Optimal Power Generation under Uncertainty via Stochas-
tic Programming. Numerical Techniques and Engineering Applications (K. Marti, Ed.),
Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1997.

[3] P. A. Dinda. An Extensible Toolkit for Resource Prediction in Distributed Systems (RPS).
http://www.cs.nwu.edu/“RPS/

[4] P. A. Dinda. Resource Signal Prediction and Its Application to Real-time Scheduling Ad-
visors. Ph.D. thesis, CMU, 2000.

[5] W. Enders. Applied Econometric Time Series. 2nd Edition, Wiley Canada, 2003.

[6] J. Han, G. Dong, Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series
Database. Proc. 15th Int. Conf. on Data Engineering, 1999.

[7] J. Hollingsworth, S. Maneewongvatana. Imprecise Calendars: An Approach to Scheduling
Computational Grids. Proc. Int. Conf. on Distributed Comp. Systems, pages 352-359, 1999.

[8] HP Grid & Utility Computing. http://devresource.hp.com/drc/topics/utility _comp.jsp

[9] S. Ma, J. L. Hellerstein. Mining Partially Periodic Event Patterns With Unknown Periods,
ICDE 2001, pages 205-214.

[10] Y. Qiao, J. Skicewicz, P. Dinda. Multiscale Predictability of Network Traffic. Tech. Rep.
NWU-CS-02-13. Department of Computer Science, Northwestern University, 2002.

[11] J. Rolia, A. Andrzejak, M. Arlitt. Automating Enterprise Application Placement in Re-
source Utilities. Proc. 14th IFIP/IEEE Workshop on Distributed Systems: Operations and
Management (DSOM 2003). Heidelberg, Germany, October 2003.

[12] J. Rolia, X. Zhu, M. Arlitt, A. Andrzejak. Statistical Service Assurances for Applications
in Utility Grid Environments. Performance Evaluation Journal, Vol. 58, No. 2-3, pages
319-339, Elsevier, Holland, 2004.

18

[13] L. W. Russell, S. P. Morgan, E.G. Chron. Clockwork: A New Movement in Autonomic
Systems. IBM Systems Journal - Vol. 42, No. 1, 2003.

[14] J. A. Skicewicz, P. A. Dinda. Tsunami: A Wavelet Toolkit for Distributed Systems. Tech.
Rep. NWU-CS-03-16. Department of Computer Science, Northwestern University, 2003.

[15] J. Yang, W. Wang, P. S. Yu. Discovering High Order Periodic Patterns. Knowledge and
Information Systems Journal (KAIS), 2004.

8 Biographies

Artur Andrzejak received the PhD degree in computer science from the Swiss Federal
Institute of Technology (ETH Zurich) in 2000. He is currently a researcher at Zuse-Institute
Berlin, Germany. He was a postdoctoral researcher at the Hewlett-Packard Labs in Palo Alto,
California, from 2001 to 2002. His research interests include systems management and modeling,
and Grids.

Mehmet Ceyran is working towards his Masters Degree in Computer Science at the Freie
Universitit Berlin, Germany. He is employed as a student programmer at Zuse-Institute Berlin
since 2003. His research interests include software engineering, systems management and arti-
ficial intelligence.

19

