
Building a Large and Efficient Hybrid
Peer-to-Peer Internet Caching System

Li Xiao, Member, IEEE, Xiaodong Zhang, Senior Member, IEEE, Artur Andrzejak, and

Songqing Chen, Student Member, IEEE

Abstract—Proxy hit ratios tend to decrease as the demand and supply of Web contents are becoming more diverse. By case studies,

we quantitatively confirm this trend and observe significant document duplications among a proxy and its client browsers’ caches. One

reason behind this trend is that the client/server Web caching model does not support direct resource sharing among clients, causing

the Web contents and the network bandwidths among clients to be relatively underutilized. To address these limits and improve Web

caching performance, we have extensively enhanced and deployed our browsers-aware framework, a peer-to-peer Web caching

management scheme. We make the browsers and their proxy share the contents to exploit the neglected but rich data locality in

browsers and reduce document duplications among the proxy and browsers’ caches to effectively utilize the Web contents and

network bandwidth among clients. The objective of our scheme is to improve the scalability of proxy-based caching both in the number

of connected clients and in the diversity of Web documents. In this paper, we show that building such a caching system with

considerations of sharing contents among clients, minimizing document duplications, and achieving data integrity and communication

anonymity is not only feasible but also highly effective.

Index Terms—Internet systems, peer-to-peer systems, proxy caching, browser caching, data integrity, communication anonymity.

�

1 INTRODUCTION

A proxy-browser system is a commonly used client/server
infrastructure for Web caching, where a group of

networked clients connects to a proxy cache server and each
client has a browser cache. A standard Web caching model
built on a proxy-browser system has the following data
flows: Upon a Web request of a client, the browser first
checks if the requested document exists in the local browser
cache. If so, the request will be served by its own browser
cache. Otherwise, the request will be sent to the proxy
cache. If the requested document is not found in the proxy
cache, the proxy server will immediately send the request to
its cooperative caches, if any, or to an upper level proxy
cache or to the Web server, without considering if the
document exists in other browsers’ caches.

This model has two features that prevent it from
effectively utilizing the rapid improvement in Internet
technologies and from adapting, in a timely manner, the
changes of the supply and demand of Web contents. First,
with a significant increase of memory and disk capacity in
workstations and PCs and with the improvement of Web
browser caching capability, users are able to enlarge browser
cache size for faster access to more cached documents and to
retain the documents in an organized manner for a longer
period of time. Furthermore, studies have shown that one

reason for proxy cache hit ratio decline is that more requests
are absorbed by local browsers (e.g., [1]), so there exist some
documents that are already replaced in the proxy cache but
still retained in one or more browser caches. This is due to
the fact that the request rates to the proxy and to browsers
are different, causing the replacement in the proxy and
browsers at a different pace. However, the browser caches
are not shared among the clients and the available locality
and bandwidth among browsers are underutilized in Web
caching. When a requested document misses in a local
browser cache and the proxy cache, it may still have been
cached in other browser caches.

Second, with the rapid increase of Web servers and the
huge growth of Web client populations in both numbers and
types, the requested Web contents have become, and will
continue to become, more diverse, causing a decrease of
proxy hit ratios. Meanwhile, existing proxy-browser systems
cause a large amount of document duplications. The amount
of document duplications between the proxy and browser
caches is generally very large because the requested docu-
ment is always cached in both the proxy and a requesting
client browser. It is also highly possible to generate a large
amount of document duplication among browsers for the
following reason: When multiple clients request some
popular documents cached in the proxy, each requesting
client will duplicate these documents in its local browser
cache. Envisioning the rapid advancement of networking
technology, we argue that the duplication issue can seriously
limit potential benefits to be gained from the current
structure of Web caching systems. Here are the reasons:

1. High-speed networking technology will soon close
the speed gap between local and remote accesses.
Therefore, file sharing and transferring among
clients will become easy and a common practice.

754 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

. L. Xiao is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
E-mail: lxiao@cse.msu.edu.

. X. Zhang and S. Chen are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA 23187.
E-mail: {zhang, sqchen}@cs.wm.edu.

. A. Andrzejak is with the Division of Computer Science, Zuse-Institute
Berlin, Takustr. 7, D-14195 Berlin, Germany. E-mail: andrzejak@zib.de.

Manuscript received 29 June 2003; revised 22 Nov. 2003; accepted 25 Nov.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0105-0603.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

2. Data duplications will cause additional overhead,
such as global data invalidations and broadcasting.
Minimizing the number of owners for a data
document also strengthens security and privacy
protections.

3. Unnecessary data duplications over the Internet can
widely waste storage space. Both the additional
operation and space overheads will certainly limit
the scalability of Internet performance.

The capability of the proxy cache will be limited as the
number of clients and document types increase. Adding
more and more additional space to a proxy cache might
temporarily increase the proxy hit ratio, but is not a remedy
against decreasing efficiency.

Peer-to-Peer (P2P) computing is an emerging distributed
computing technology that enables direct resource sharing
of both computing services and data files among a group of
mutually trusted clients over the Internet. There are several
reasons why peer-to-peer computing model is demanding
[18]. One of the reasons is that the increasing amounts of
Web content and bandwidth among clients will get under-
utilized if client/server models continue to be dominant in
the Internet, such as the centralized Web search engines and
Web servers. Similarly, if every client has to be served by a
proxy on a miss, the number of clients connected to the
proxy will be limited (nonscalable) and the available
bandwidths among the clients will be underutilized. P2P
systems can be classified into two classes: a pure P2P, where
peers share data without a centralized coordination, and a
hybrid P2P, where some operations are intentionally
centralized, such as indexing of peers’ files.

We have proposed a hybrid peer-to-peer Web caching
management framework, called browsers-aware caching (see
[37] and [39]). In this paper, we present its enhancement
and deployment by practically making the browsers and
their proxy share the contents to exploit the neglected but
rich data locality in browsers and by reducing document
duplications among the proxy and browsers’ caches to
effectively utilize the Web contents and network bandwidth
among clients. Our objective is to apply a hybrid P2P
technique in Web caching, aiming at reducing latency,
exploiting idle resources, and facilitating the exchange of
distributed files. This system can be very effective in an
environment where the bottleneck of the communication
path is between the proxy and the origin server. However,
the P2P design domain also opens other challenging issues.
In our study, data integrity and communication privacy are
the two issues that must be addressed.

In this paper, we make three contributions: First, using
trace-driven simulations with Web traces, we compare the
proposed Web caching management scheme with the

traditional approach. As a result, we show that both the
hit ratio and byte hit ratio of this scheme are significantly
higher and the Web server access latency is substantially
reduced. We also empirically show that the performance of
our scheme compares very favorably with the performance
of offline Web caching algorithms. Second, we ensure data
integrity using checksums and enforce communication
anonymity by effectively hiding the identity of each client
as it provides or requests documents. Finally, we have
implemented a browsers-aware prototype by interfacing
two user daemons with the Squid proxy and the Netscape
browser. We show that building such a peer-to-peer caching
system with considerations of minimizing document
duplications, client anonymity, and data reliability is not
only feasible but also highly effective.

2 MOTIVATION AND RATIONALE

2.1 Trends of Hit Ratio Decrease and Access
Diversity

The hit ratios to proxy caches have been observed to be in a
decreasing trend for a few years. There are two major
reasons for the decrease. First, e-commence and persona-
lized services have increased the percentage of dynamic
documents. Dynamic documents are usually noncachable.
Many recent studies (e.g., [42]) have shown that requests for
dynamic Web content also contain substantial locality for
identical requests and have provided several methods to
cache dynamic Web contents. This is not our focus in this
paper. Second, the increase of proxy cache size has not been
sufficient to keep up with the rapid increase in the numbers
and types of Web servers and clients’ diverse interests. For
example, Barford et al. [3] give a comprehensive study of
the changes in Web client access patterns based on the
traces collected from the same computing facility with a
similar nature of the user population separated by three
years. Their experiments show that, compared with the data
three years ago, the hit ratios are reduced and the most
popular documents are less popular in the transfer data set.
This implies that accesses to different types of Web servers
have become more evenly distributed. One reason for this,
we believe, is that the access variations have increased as
more and more Web servers are emerging.

In order to further understand the increasing diversity in
Web accesses and its effects to proxy hit ratios, we have
analyzed the access pattern of browser traces used in [3]. We
select the traces in a period of two months of the two years,
which are denoted as BU-95 and BU-98 (see Table 1),
respectively. The difference between the total number of
requests of BU-95 trace and that of BU-98 trace is very large.
In order tomake fair comparisons, we compare request ratios

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 755

TABLE 1
Selected Web Traces

instead of the numbers of requests between these two traces.
We compare two statistical results: 1) the percentages of
requests to different servers over the total requests, and 2) the
percentages of requests to different documents over the total
requests, both reflecting access distributions.

In Fig. 1a, we plot the percentage of the requests to each
server over the total requests versus server ranks. The
ranks are obtained by sorting the percentages of accesses
to servers in decreasing order. In Fig. 1b, we plot the
percentage of the requests to each document over the total
requests versus document ranks by sorting the percentages
of accesses to documents in decreasing order. We have
two observations. First, the access distributions presented
in the two figures are consistent with an observation
reported in [5]—the distributions of requesting accesses
and server accesses follow the Zipf-like distribution �=i�.
Second, the access patterns had been changed toward
more even distributions during the three year period.
Specifically, the request percentages of BU-95 trace are
higher than those of BU-98 for very high rank servers and
documents. But, for lower rank servers and documents,
the request percentages of BU-98 exceed those of BU-95.
So, for the same cache size, BU-95 could get a higher hit
ratio than BU-98. However, the hit ratios of BU-98 can be
increased at a faster pace than that of BU-95 if the cache is
larger than a certain size.

This type of access pattern change demands progressive
increase of the cache size in order to retain a fixed hit ratio
during a period of time. To estimate the cache size
requirement difference between BU-95 and BU-98 for a
given hit ratio, we fit the curves in Fig. 1 into Zipf-like
distributions. We assume that the file size with the same
rank in BU-95 is the same as that in BU-98 and the priority
of caching a document is based on the document
popularity. From the fit Zipf-like distribution curves, we
estimate that a 12.7 times larger cache is needed for BU-98
to achieve a given hit ratio in BU-95. (In fact, we obtained a
number of 10 that is smaller than 12.7 from simulation
results to be presented in Section 4. This is because the
average document size in BU-98 is smaller than that in
BU-95.) These assumptions and numbers may not be
directly used to guide the proxy cache design, but we
attempt to show the trends of decreasing hit ratios in
proxies and the diversity of the Web contents. In order to

retain the proxy cache hit ratios, we have to enlarge the
cache size as time passes. However, the proxy cache size
enlargement will no longer be sufficient. Therefore, we
should consider alternative methods to effectively utilize
the limited caching space.

We have also analyzed proxy access pattern statistics of
NLANR (National Lab of Applied Network Research)
available in the public domain [29] between 1998 and 2001
and observed the same trend. We do not show and discuss
the analytic figures in this paper because the data comes
from proxy traces.

2.2 Case Studies of Duplications in Web Caching

We have analyzed the two BU browser traces described in
the previous section and two Boeing traces also listed in
Table 1. The Boeing Company collected anonymous logs
from Boeing’s Puget Sound perimeter (firewall) proxies by
using an anonymizer tool (log2anon) and made these logs
available in [6]. For privacy reason, client IP addresses are
not identical between two different days, so we use traces
based on one day’s log file. We have used one day’s trace on
4 March 1999 and one day’s trace on 5 March 1999, which
are the most recent traces in this site.

These traces have operated in a simulated system with
an infinite proxy cache and infinite browser caches, where
infinite proxy/browser cache is the total size storing all the
unique requested documents in the proxy/browser cache.
There are two types of data sharing in Web surfing:
individually requested documents by a single client and
commonly requested documents by multiple clients. We
define the “intrasharing” ratio as the percentage of the
requests only hit in local browsers for individual usage of
clients out of the total hit requests in the proxy-browser
system. We further define the “intersharing” ratio as the
percentage of the requests coming from multiple clients but
hitting the same documents out of the total hit requests in
the proxy-browser system.

We have three observations based on the trace analysis
results reported in Table 2. First, the average hit ratio of the
two traces is 48.69 percent, which means that 51.31 percent
of requested documents are only accessed once and they
remain in both proxy and browser caches. Second, among
the total hit requests in the proxy-browser system, the
average intrasharing ratio is 36.20 percent. Since this large

756 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 1. The percentage of the requests to each server or document over the total requests versus server ranking or document ranking.

portion of documents is only for individual usage, the

documents do not need to be cached in the proxy, but only

need to be cached in the requesting local browser caches.

Unfortunately, the standard Web caching model stores this

high percentage of documents in the proxy. Finally, the hits

for intersharing by multiple clients that need to be cached in

the proxy is 63.80 percent. However, documents of this type

are duplicated in the proxy cache and multiple browser

caches.
Our analysis and case studies show that a significant

amount of document duplication exists in commonly used

Web caching models. If supply and demand of diverse Web

contents are continually increased, this duplication will

soon limit the effective utilization of caching space. In

addition, current Web caching models lack a data sharing

mechanism between the proxy and browsers with which to

further exploit data locality and utilize caching space. This

preliminary trace analysis motivates us to propose new

caching management schemes to improve performance by

exploiting data locality in browsers and reducing the

document duplications among a proxy and its browsers to

utilize more caching space.

3 THE ENHANCEMENT OF BROWSERS-AWARE

CACHING AND ITS DATA STRUCTURES

3.1 The Basic Framework

Basically, in this design, the proxy server connecting to a

group of networked clients maintains an index file of data

objects of all clients’ browser caches, which is called browser

index file. If a user request misses in its local browser cache

and the proxy cache, the browsers-aware proxy server will

search the browser index file attempting to find it in a client’s

browser cache before sending the request to an upper level

server. If such a hit is found in a client, there are two

alternative implementations to let the requesting client

access the data object. First, the proxy server will inform

this client to forward the data object to the requesting client.

In order to retain user browsers’ privacy, the message

passing from the source client to the requesting client should

be anonymous to each other. The second implementation

alternative is to make the proxy server provide the data by

loading the data object from the source client and then

storing it to the requesting client. The anonymity issues of

these two alternatives will be discussed in Section 5.
Upon a client request, the browsers-aware caching

scheme provides the following data flows for document

service and storage management:

1. When the request is missed in the entire proxy-
browser system, the requested document will be
providedbyanupper level proxyor aWeb server. The
initial document coming externally will be cached
only in the requesting browser. However, if the proxy
cachehas enough free cache space for thedocument, it
can be cached in the proxy at the same time.

2. If the request is a hit in the local browser, the
document will be read from the browser cache.

3. If the request misses in its local browser cache but
hits in the proxy, then, in addition to providing the
document, the proxy will increment the counter of
the number of remote accesses to this document
from this requesting client. The proxy will inform
the requesting client to cache this document only if
the value of this counter is larger than a predeter-
mined threshold, TH_BROWSER.

4. If the request is a miss in the local browser and the
proxy, the browser index file in the proxy will be
searched to see if the document is cached in another
browser cache. If the request is a hit in another
client’s browser cache, then the hit browser will do
two bookkeeping operations besides providing the
document: a) increment the counter of the total
number of distinguished remote requesting clients to
this document if the requesting client accesses this
document for the first time and b) increment the
counter of the number of remote accesses to this
document from this client. If the first counter is
larger than a predetermined threshold, TH_PROXY,
it means this document is shared by a sufficient
number of clients so that the hit browser will transfer
and cache the document to the proxy. The requesting
browser is informed to cache this document only if
the value of the second counter is larger than
TH_BROWSER.

In the above items 1, 3, and 4, the document may be cached

in either a browser cache or the proxy. When the browser

cache or the proxy cache does not have sufficient space to

store the document, one or more currently cached docu-

ments have to be replaced. LRU_Threshold (which does not

cache a document larger than a threshold size) is used as the

basic replacement policy for our scheme. (Most practical

systems use algorithms similar to LRU_Threshold [32].) For

a document larger than the threshold, our scheme also

caches it as long as the cache has enough free space, but it is

marked as an LRU document. The cache size threshold used

in LRU_Threshold in the proxy and a browser cache is

different due to significant difference of their cache sizes.
Major contributions of this paper are browser-aware

caching data structures for a practical implementation and

its enhancement of reducing duplications. The rest of the

sections will present these issues.

3.2 Data Structures and Operations

Besides the browser index file, two other structures are

maintained to facilitate this scheme. One structure allocated

in each browser is used to manage cached documents in it.

Another structure allocated in the proxy is used to manage

all documents cached there.

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 757

TABLE 2
Trace Analysis on Document Duplications

and Sharing Based on the Proxy-Browser System
Hit Ratios, Intrasharing Ratios, and Intersharing Ratios

3.2.1 Browser Index File in the Proxy

This browser index file records a directory of cached file
objects in each client machine. Each item of the index file
includes the ID number of a client machine, the URL
including the full path name of the cached file object, and a
timestamp of the file, or the TTL (Time To Live). Since the
dynamic changes in browser caches are only partially
visible to the proxy server (when a file object is sent from
the proxy cache to the browser), the browser index file will
be updated periodically by each browser cache. Here is
another alternative. After a file object is sent from the proxy
server to a client’s browser cache, its index item is added to
the browser index file. Whenever this file object is replaced
or deleted from the browser cache, the client sends an
invalidation message to the proxy server. After that, the
proxy deletes the corresponding index item.

3.2.2 The Structure in Each Browser

A counter and an array are allocated for each cached
document that has been requested by other clients. The
counter CC keeps the number of other clients that have
accessed the document. Its value will be used to check if
this document should be cached in the proxy. Each
element of the array AC has two fields: Client Alias and
Access Count. An AC:Client Alias records a client who
has accessed the document. AC:Client Alias is produced
by the proxy to hide the true identity of the requesting
client. The aliases are consistent and untraceable, as in
LPWA [15]. AC:Access Count records the number of
accesses from the corresponding client. The array is of
size TH_PROXY, of which CC elements are in use. It is
allocated for a document only if there is a remote client
requesting this document. When a document is replaced,
the counter and array for this document are also replaced.

Fig. 2a presents the management operations when a
remote client requests a document cached in this browser.

When a browser is informed to cache a document sent by
another client, it will cache this document.

3.2.3 The Structure in the Proxy

Each cached document in the proxy needs to count the
number of accesses to this document from different
requesting clients. This is used to check if this document
should be duplicated in a requesting client browser. We use
a linked list for each document. Each element of the list LL
includes three fields:

1. Client ID: the ID number of a requesting client,
2. Access Count: the number of requests from this

client, and
3. Pointer: a pointer to link to the next element.

A new element is allocated to the linked list of a document
only if this document is requested by a client for the first
time. When a document is replaced, its linked list is also
replaced.

Fig. 2b presents the management operations when a
client request hits in the proxy. When the proxy is
informed to store a document sent by a client, the proxy
first caches the document and then copies the necessary
elements of the array sent by the client to the
corresponding fields in the newly created linked list.
(The necessary elements are those with AC:Client ID 6¼
�1 and AC:Access Count < TH BROWSER.) When the
proxy has to fetch a document outside the proxy-browser
system, it will pass the document to the requesting client
and inform the client to cache it. The proxy will not cache
the new arrival document.

3.3 Offline Algorithms for Performance
Comparisons

The goal of obtaining optimal hit ratio and byte hit ratio
in a proxy-browser system is equivalent to finding
optimal replacement algorithms for objects with different

758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 2. (a) The management operations in each browser when a remote client request hits in it. (b) Management operations in the proxy when a client
request hits in the proxy.

sizes in a single cache whose size is the accumulated size
of the proxy and all browsers. Studies in [21] provide
two offline algorithms that are close to the optimal
replacement algorithms. These offline algorithms are not
viable in practice due to their requirement of knowing
future requests. However, in order to evaluate the
effectiveness of the proposed schemes, we compare their
performance with that of the offline algorithms. This
section gives an overview of two models of cost
measurement for offline Web caching algorithms and
discusses the respective approaches. They both follow
[21] and are also discussed in [2]:

1. the Fault Model, where the cost of an algorithm for a
request sequence � equals the number of cache
misses and

2. the Bit Model, where we sum up the sizes of the
documents each time they are brought into cache.

Both models do not discriminate whether a document is
stored in a proxy or in a browser cache.

If all documents have the same size and same costs of
bringing them into cache, Belady’s Rule [4] is known to be an
optimal strategy for evicting pages from the cache: On a
fault evict, the most distant page is the page whose next
request is farthest in the future. However, for caching of
Web documents with different sizes, these assumptions are
not appropriate. Therefore, we consider, for each of the
above models, a separate offline algorithm.

For the Fault Model, we use the Offline Fault Model
Algorithm (OFMA) [21], which is shown in Algorithm 1. It
guarantees that, for any request sequence �, the number of
cache misses is within the factor 2 log k of the number of
cache misses for an optimal offline algorithm. Here, k is the
ratio between the largest and the smallest document in �.

As for the BIT Model, we use the Offline Bit Model
Algorithm (OBMA) from [21]. The cost of this algorithm is
essentially within the factor 5ðlog kþ 4Þ of the optimal
offline algorithm. As in OFMA, the documents are first
divided into l-classes. If the cache capacity is exceeded by h
when a new object is cached, OBMA evicts, from every
class, the most distant objects until there is enough room or
there are no objects in that class. In order to avoid evicting a
large page when the cache is only exceeded by a small
amount, OBMA maintains a counter for each class. If h is
smaller than the most distant object in a class, it is added to
the counter of this class. When the counter is larger than the
size of the object, OBMA evicts the object and subtracts the
size of the object from the counter.

The goals of the Fault Model and the Bit Model are to
maximize hit ratios and byte hit ratios, respectively. In
order to show how close the performance of the proposed
caching scheme is to the optimal one, we compare the
performance of our scheme with that of the two offline
algorithms.

4 PERFORMANCE EVALUATION

In performance evaluation, we have conducted the follow-
ing tasks in order to evaluate the performance of the
browser-aware scheme comparatively and fairly:

. We first examine browser and proxy cache sizes in
practical systems to provide a basis and a rationale
for us to configure our simulated Web caching
system.

. We compare the performance of the browser-aware
scheme, including both browser sharing and dupli-
cation reduction with the conventional proxy-and-
local-browser model and with the basic browser-
aware model (browser-sharing only). In addition, we
use an offline-algorithm to compare how close the
browsers-aware model is to optimal.

. Specifically, we compare the hit ratios and byte hit
ratios among the selected schemes by

1. changing the proxy cache size,
2. changing browser cache size,
3. changing replacement threshold,
4. comparing the memory hit ratios, and
5. scaling the number of clients.

These comparisons allow us to look into the
performance insights of different schemes and to
show the effectiveness of the browser-aware scheme.

. We estimate the achieved latency reduction by
sharing browsers and by reducing the duplications.

4.1 Sizes of Browser and Proxy Caches

The study in [32] evaluates seven Squid proxies covering
several levels of the caching hierarchy from leaf uni-
versity proxies, to top level proxies for large country-wide
networks, and to the international root proxy located at
NLANR. Three proxies are leaf proxies which are related
to our study: ruu from The Netherlands, uit from
Norway, and adfa from Australia. Their proxy cache
related configurations are listed in the second to fourth
columns of Table 3. Squid uses a two-level cache. The
first level is a small and hot memory in which very
popular and recently requested documents are kept. The
second level is a disk cache where the majority of
documents reside. The second and third columns in
Table 3 are the sizes of the hot memory and disk caches.
The last two columns are the average proxy cache size in
hot memory per client and the average proxy cache size
in disk per client. We assume that each client’s browser
has a cache. If we use the average proxy cache size per
client in Table 3 as the browser cache size of each client,
the memory space ranging from 0.04 MB to 0.08 MB is
certainly too small. The total cache size ranging from
7.34 MB to 10.86 MB is also not large enough in practice
for today’s computer systems [23]. Therefore, in our
study, we define � as

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 759

� ¼
PP

i¼1 Cachebrowseri
Cacheproxy

; ð1Þ

where Cachebrowseri is the size of a client browser cache, P is
the number of clients, and Cacheproxy is the size of the proxy
cache responsible for the P clients. The � is the ratio of the
accumulated browser cache size to the proxy cache size,
which is in a range of 0.1 to 50 in our experiments. If the
accumulated browser cache size increases faster than the
increase of the proxy cache size, the value of � tends to
increase as both clients and the proxy server are upgraded.

4.2 Performance of the Browser-Aware System

Using trace-driven simulations, we have evaluated and
compared the performance of four caching schemes with
the two BU browser traces and two Boeing traces:

1. proxy-and-local-browser: If a request misses in its local
browser and the proxy cache, the proxy will send the
request to an upper level server without considering
if the document exists in other browsers’ caches.

2. basic-browsers-aware: If a user request misses in its
local browser cache and the proxy cache, the
browsers-aware proxy server will attempt to find
the requested document from other browsers before
sending the request to an upper level server, without
considering unnecessary caching duplications.

3. browsers-aware: This is the comprehensive scheme
discussed in Sections 3.1 and 3.2.

4. offline-algorithm: These are the offline algorithms
close to optimal performance for comparisons with
our proposed schemes which are discussed in
Section 3.3.

We have validated our simulator using the similar
method in [12]. We use three performance metrics. Hit ratio
is the ratio between the number of requests that hit in
browser caches or in the proxy cache and the total number
of requests. Byte hit ratio is the ratio between the number of
bytes that hit in browser caches or in the proxy cache and
the total number of bytes requested. Latency is the average
access latency time per request.

We will discuss performance sensitivity to five important
parameters: proxy cache size, browser cache size, cache size
threshold for replacement, memory hit ratio, and the
number of clients. We use ps to denote proxy cache size,
which is based on the percentage of infinite proxy cache
size. Here is the rationale for introducing this parameter.
Because of the inconsistency of client IP addresses in the log
files, we have to use one day’s Boeing trace, whose size is so
small that we cannot use an actual proxy cache size in our
study. In our study, we scaled down the cache sizes
accordingly by using a small percentage of the infinite
proxy cache sizes. We use bs to denote browser cache size,

which is based on the value of �. We assume that all
browsers have the same size. We use th to denote cache size
threshold used in LRU_Threshold cache replacement
policy, which is a ratio of a given cacheable document
threshold size over the proxy (or browser) cache size.

4.2.1 Evaluation of Sensitivity to the Proxy Cache Size

We have examined how sensitive the hit ratios and byte hit
ratios are to the changes of the proxy cache size. For the
experiments of each input trace, we set ps to 1, 2, 3, 5, and
10 percent of the infinite proxy cache size. We set � ¼ 10.
We also chose th ¼ 0:5, which means the proxy size
threshold is half of the proxy cache size and the browser
size threshold is also half of browser cache size. Our trace-
driven simulations show that our browsers-aware consis-
tently outperforms basic-browsers-aware and proxy-and-local-
browser for all the traces measured by hit ratios and byte hit
ratios, in Figs. 3 and 4, respectively.

We first compare the performance of browser traces
BU-95 and BU-98. For proxy-and-local-browser, BU-98’s hit
ratio is much lower than BU-95’s hit ratio, but is also much
lower than BU-98’s hit ratio of offline-algorithm, which means
that the hit ratio of the BU-98 trace has much more potential
for improvement, while the hit ratio of the BU-95 trace has
almost no room for improvement because it is so close to
offline-algorithm. Both traces’ byte hit ratios of proxy-and-local-
browser have similar performance gaps as offline-algorithm.
Our scheme of browsers-aware improves hit ratios and byte hit
ratios of both traces, which are very close to offline-algorithm.
As an example of ps ¼ 5%, the offline-algorithm outperforms
browsers-aware by only 3.03 and 4.26 percent, measured by hit
ratio and byte hit ratio for BU-98. So, browsers-aware is more
promising to improve year 1998’s trace than the trace three
years before because requests in the year 1998’s trace are
more evenly distributed.

Boeing-4 and Boeing-5 are proxies traces, but we still see
a big performance gain from browsers-aware. The intranet-
work overhead simulation for these two traces shows that
the increase of intranetwork overhead of browsers-aware is
trivial, which does not offset the (byte) hit ratio gain from
this scheme. So, reducing document duplications among
cooperative proxies in the same organization is still
promising for performance. But, it is not desirable for
higher-level proxies, which are closer to servers and farther
from clients because long distances among these proxies
and potential networking congestion may offset (byte) hit
ratio gains so that response time cannot be improved [13].

The percentage (ps) reflects the ratio between the actual
proxy cache size and the accumulated size of unique
documents. If the increase of the numbers of servers and of
the diverse client populations is faster than the increase of
the proxy cache size, the relative proxy cache size (ps) will
continue to decrease. In other words, our browsers-aware

760 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

TABLE 3
Representative Proxy Cache Configurations Reported in [32]

scheme will be more performance beneficial as Web servers
and Web client populations continue to increase in both
numbers and types.

4.2.2 Evaluation of Sensitivity to a Browser Cache Size

We have examined how sensitive the hit ratios and byte hit
ratios are to changes of a browser cache size. For the
experiments of each input trace, we set � to 0.1, 1, 5, 10, 15,
20, and 50, respectively. We set ps to 1 percent of the infinite
proxy cache size and chose th ¼ 0:5.

Our trace-driven simulations show that our browsers-
aware consistently outperforms basic-browsers-aware and
proxy-and-local-browser for all the traces with all the given
� values measured by hit ratios and byte hit ratios in Figs. 5
and 6, respectively. The performance gain of all the schemes
is improved slowly after � reaches a certain value. The best

performance gain was achieved for � in the range of 1 to 15.
If � is too small, such as less than 0.1, the accumulated
browser cache is not large enough to be effective for both
browsers-aware and basic-browsers-aware. It is also not desir-
able to increase � to a very large value. (The paper in [34]
also points this out). For the examples in Section 4.1, the
range of 1 to 15 of � corresponds to a browser cache size in
the range of 10 MBytes to 150 MBytes, which is a reasonable
range of browser cache size in the current storage capacity
of workstations.

4.2.3 Evaluation of the Sensitivity to the Replacement

Threshold

We use the basic LRU_threshold cache replacement policy
in both proxy-and-local-browser and basic-browsers-aware. We
have revised the LRU_Threshold policy for browsers-aware,

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 761

Fig. 3. Hit ratios of different caching schemes versus relative proxy cache sizes (� ¼ 10, th ¼ 0:5).

Fig. 4. Byte hit ratios of different caching schemes versus relative proxy cache sizes (� ¼ 10, th ¼ 0:5).

Fig. 5. Hit ratios of different caching schemes versus relative browser cache sizes with the four Web traces (ps ¼ 1%, th ¼ 0:5).

where a document larger than the threshold could be
cached as long as enough free caching space is available but
is marked as an LRU document. We have examined how
sensitive the hit ratios and byte hit ratios are to the changes
of the replacement threshold. For experiments of each trace,
the th variable is set to 1

64 ,
1
16 ,

1
8 ,

1
4 ,

1
2 ,

3
4 ,

5
6 , and 1, respectively.

We set ps to 1 percent of the infinite proxy cache size and
chose � ¼ 10.

Our trace-driven simulations show that the browsers-
aware consistently outperforms basic-browsers-aware and
proxy-and-local-browser for all the traces with all the given
relative thresholds measured by hit ratios and byte hit ratios
in Figs. 7 and 8. Our experiments show that, in general,
small cache threshold values are more effective for browsers-
aware than large threshold values measured by the hit
ratios. This is because file size distribution is heavy-tailed

[3]. The average size of popular documents is smaller than
that of unpopular documents. But, a very small threshold is
not beneficial to performance measured by byte hit ratios.
Comparing hit ratios of browsers-aware for trace BU-95 and
BU-98, we show that small cache threshold values are more
effective for BU-98 trace. This can be explained by the
findings in [3]: BU-98 trace shows a shift toward smaller
sizes overall than BU-95 trace. The threshold impact to
(byte) hit ratios of browsers-aware is much less sensitive than
those of basic-browsers-aware and proxy-and-local-browser for
browser traces.

4.2.4 Performance Impact of Memory Hit Ratios

The browsers-aware has another advantage over the proxy-
and-local-browser policy in terms of “memory” byte hit
ratios. In other words, for the same byte hit ratio, a higher

762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 6. Byte hit ratios of different caching schemes versus relative browser cache sizes with the four Web traces (ps ¼ 1%, th ¼ 0:5).

Fig. 7. Hit ratios of different caching schemes versus the replacement threshold with the four Web traces (ps ¼ 1%, � ¼ 10).

Fig. 8. Byte ratios of different caching schemes versus the replacement threshold with the four Web traces (ps ¼ 1%, � ¼ 10).

percentage of requests will hit in the main memory of
browser caches and the proxy cache provided by the
browsers-aware. (Accesses to main memory have much lower
latency than accesses to disks.) To quantitatively justify this
claim, we have compared the memory byte hit ratios of the
two policies for an equivalent byte hit ratio.

In our simulation, we set the memory cache size in the
proxy as 1/150 of the proxy cache size based on the
memory ratio reported in Table 3. We also set the memory
size of a browser cache as 1/150 of the browser cache size,
which is not in favor of the browsers-aware because the
memory cache portion in a browser can be much larger than
that for the proxy cache in practice. We also conservatively
assume that one memory access of one cache block of
16 Bytes spends 200 ns (the memory access time is lower
than this in many advanced workstations) and one disk
access of one page of 4 KBytes is 10 ms.

Figs. 3 and 4 show that the hit and byte hit ratios of the
browsers-aware at 2 percent of the infinite cache size are very
close to those of the proxy-and-local-browser policy at
10 percent of the infinite cache size (the hit ratio comparison
is 32.70 versus 32.66 and byte hit ratio comparison is 30.49
versus 31.21) for the BU-98 trace. However, the memory
byte hit ratios of the two schemes are quite different under
the same condition, which are 24.81 percent for the browsers-
aware and 16.51 percent for the proxy-and-local-browser
policy, respectively. The larger memory byte hit ratio of
the browsers-aware in this case would reduce 26.93 percent of
the total hit latency compared with the proxy-and-local-
browser. We also compare browsers-aware at 1 percent of the
infinite cache size and proxy-and-local-browser at 10 percent
of the infinite cache size, where their byte/hit ratios are
almost the same. Their memory byte hit ratios are 15.51 and
6.28 percent, respectively. The larger memory byte hit ratio
of the browsers-aware in this case would reduce 28.88 percent
of the total hit latency compared with the proxy-and-local-
browser. The latency reduction due to the higher percentage
memory accesses will be larger in practice because the
memory cache size of each browser is much larger than the
assumed size.

4.2.5 Performance Impact of Scaling the Number of

Clients

We have also evaluated the effects of scaling the number of
clients to browsers-aware. For each trace, we observe its hit

ratio (or byte hit ratio) increment changes by increasing the
number of clients from 25 to 50 to 75 percent and to
100 percent of the total number of clients. We also regard
each percentage as a relative number of clients. For all
relative numbers of clients of each trace, the proxy cache
size is fixed to 10 percent of the infinite proxy cache size
when the relative number of clients is 100 percent. The byte
hit ratio increment or the hit ratio increment of browsers-
aware for a given trace is defined as

ðbyteÞ hit ratio of browsers aware� ðbyteÞ hit ratio of proxy and local browser
ðbyteÞ hit ratio of proxy and local browser

:

Fig. 9a presents the hit ratio increment curves and Fig. 9b
the byte hit ratio increment curves of the five traces as the
relative number of clients changes from 25 to 100 percent.
Our trace-driven simulation results show that both hit ratio
increment and byte hit ratio increment of the browsers-aware
proportionally increases as the number of clients increases.
For some traces, the increments are significant. For
example, the hit ratio increment of the BU-98 trace increases
from 16.89 to 23.85 percent to 28.13 percent and to
34.13 percent as the relative number of clients increases
from 25 to 50 percent to 75 percent and to 100 percent,
respectively. The byte hit ratio increment of the Boeing-5
trace increases from 36.35 to 46.34 percent to 52.92 percent
and to 66.02 percent.

The performance results indicate that browsers-aware is
performance beneficial to client cluster scalability because it
will exploit more browser locality and utilize more memory
space as the number of clients increases in the cluster.

4.3 Latency Reduction

The access delay for fetching a missed document in the
proxy cache from a remote server can be estimated by
summing the network connection time and the data
transferring time in the Internet. We estimated connection
times and data transferring times by using the method
presented in [20], where the connection time and the data
transferring time are obtained by applying a least squares
fit to measured latency in traces versus the size variations
of documents fetched from different remote servers. The
access latency to remote servers reduced by the browsers-
aware can be further estimated by accumulating the
latency times used to access remote servers for those

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 763

Fig. 9. The hit ratio and byte hit ratio increments of the browsers-aware over the proxy-and-local-browser.

requests missed in basic-browsers-aware or proxy-and-local-
browser, but hit in browsers-aware. Our experiments show
that the browsers-aware achieves average latency reduction
of 21.25 percent, compared with the basic-browsers-aware
scheme, and about 56.61 percent compared with the
proxy-and-local-browser scheme.

4.4 Performance Summary

We have shown that the browser-aware scheme outper-
forms the other compared schemes under the conditions of
changing the proxy cache size, the browser cache size, the
replacement threshold, and scaling the number of clients.
Furthermore, we show that the browser-aware scheme will
be increasingly performance beneficial as the the number of
Web servers increases and as the number of clients
connected to a proxy scales. In addition to the high hit
and byte hit ratios of the browser-aware scheme, the
memory hit ratios on browsers and proxy are also high,
which contributes to significant latency reductions.

5 RELIABILITY AND PRIVACY

In order tomake the browsers-aware caching scheme feasible
in practice, the reliability and privacy of the browser data
must be seriously considered. These are also related to
security. The first issue is reliability of shared files among
browser caches. Since each client has the right tomodify his/
her browser cache, the browser data files that have been
modified by an owner client are not reliable and secure for
sharing among clients. We need to ensure the data integrity
of the shared files among browser caches. The second issue is
the privacy of clients who request and provide a file. A
request from one browser (requesting browser) may be
satisfied by another browser (hit browser). The requesting
browser and the hit browser may not want to reveal their
identities to each other and to other browsers and the hit
document should not be visible by other clients to preserve
the privacy of each client. This concern can be addressed by
making anonymous communications between clients.

We have proposed protocols to enforce data integrity
and communication anonymity. Our study shows that the
associated overheads are trivial. These protocols are based
on symmetric and public key encryptions [28]. In a
symmetric key system, two communicating parties share
an identical secret, the symmetric key, used for encryption
and decryption. DES (Data Encryption Standard) is such an
example. In a public key system (e.g., RSA), such a party
has a public/private key pair. A public key can be accessed
by everyone. A sender encrypts an outgoing message using
a receiver’s public key and the receiver uses its private key
to decrypt this ciphertext.

5.1 Data Integrity

To ensure that a document received by a client is tamper-
proof, we need to find a way for a requesting browser to
check whether the content it receives is intact. For this
purpose, we use the proxy server to produce a digital water
mark in the following manner: For a document f , the digital
watermark is produced by first generating a message digest
using MD5 [31] and then encrypt the message digest with
the proxy server’s private key. We assume that the private

key of the proxy is x, the corresponding public key is y, and
the public keys of the browser caches are known to all peer
clients. We use KðMÞ to represent either 1) the message M
being encrypted with the key K or 2) the ciphered
message M being decrypted with decryption key K.

Fig. 10 shows the integrity protocol. Initially, when a
client ci sends a request to the proxy for a document, the
proxy obtains the requested document, denoted as f , either
from the server or an upper-level proxy. The proxy
generates an MD5 message digest, hðfÞ, of the document.
It then encrypts hðfÞ with its private key x to produce a
digital signature, xðhðfÞÞ. The message ff; xðhðfÞÞg is sent
to the client ci and stored in its local cache. If another
client cj requests the same document and this document has
been replaced in the proxy cache and is found to be in ci’s
cache, the proxy will instruct ci to send the message
fðhðfÞÞ; fg to cj. On receiving the message, cj will produce a
message digest for the received document using MD5 and
compare the message digest with yðxðhðfÞÞÞ. No client can
tamper with the document f and produce a matching
digital watermark because no client but the proxy server
knows the private key of the proxy server.

5.2 Communication Anonymity

Our browsers-aware system hides the identities of both
browser senders and receivers. This communication
anonymity is ensured by having the proxy act as an
anonymizing proxy. A client always sends a request to
the proxy. The proxy contacts a targeted client and
receives the content on behalf of the requesting client.
The targeted client does not know which client requests
the document and a requesting client does not know
which client delivers the content. We have also developed
several effective anonymity protocols that hide identities
among peer browsers without or with limited centralized
controls of the proxy. For detailed descriptions of mutual
anonymity protocols, interested readers may refer to [38].

6 IMPLEMENTATIONS AND MEASUREMENT RESULTS

In order to implement the additional communication and
computing functions in each client, the security and
integrity protocols between clients, and the data manage-
ment schemes for browsers-aware caching, we have built a
system infrastructure based on existing client and proxy
servers. The infrastructure consists of two parts: a client

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 10. Integrity protocol.

daemon to interface its browser and to communicate with
the proxy and a browsers-aware proxy server. Coordinating
the operations between the two sites, we build a secured
browsers-aware caching system.

6.1 A Client Daemon to Interface the Browser and
Communicate with the Proxy

We have selected the mozilla (http://www.mozilla.org or
netscape) software as the working browser system since it is
widely used in applications. Instead of revising the browser
source code, we have built a client daemon interfacing the
browser and communicating with the proxy. This approach
makes the commercial browser software still portable and
keeps its independent functions. The client daemon consists
of a pair of parent-child processes at the user level. The
child process serves as a receptionist that “listens” at a
reserved port to incoming messages of requesting data files
from the proxy. If such a message is received, the
receptionist searches and fetches the file from the client
browser and sends it back to the proxy or sends it to a target
client. The parent process serves as the browser file index
manager. This manager periodically checks the status of file
changes in the browser and timely sends the index updates
to the proxy. Three major data management functions are
implemented to coordinate caching activities between
browsers and the proxy.

. make_a_browser_caching_decision. This function deci-
des whether the arriving document should be cached
in the local disk. The decision is made based on a
threshold value of the local requesting counter (see
the caching algorithm described in Section 3).

. make_a_proxy_caching_decision. This function decides
whether a document requested by another client
should be cached as a shared document in the proxy.
The decision is made based on a threshold value of
the global requesting counter (see the caching
algorithm described in Section 3). For this purpose,
a port is reserved for dedicated communication
between a browser and the proxy. When a client
sends back a document that proxy requests, it will
use the same reserved port.

. index_file_management. This user function dynami-
cally monitors the status of the local browser
document index files. Whenever a sufficient amount
of local files are replaced (for example, a 10 percent
change) and the network is not busy, it will send the

related items based on replaced files to the proxy for
updating its browser index file.

With these three functions, the client daemon adds
simple and sufficient functions to a client browser so that it
is able to actively communicate with other clients directly or
through the proxy. The client daemon is activated at the
time when the system is booted. Fig. 11a illustrates the
organization of the client daemon and its interface with the
netscape browser.

6.2 A Browsers-Aware Proxy Server

We have selected the Squid proxy server (http://www.

squid-cache.org) as the working system. Besides creating a
global browser index file in the proxy, three additional
functions are added to the proxy server:

. check_index_file. This function checks the global
browser index file after a miss occurs in the proxy.
If the index file search is successful, it sends a data
request to the target client.

. cache_data_in_proxy. This function caches the data
after receiving a positive decision from a client.

. global_index_file_management. This user function
maintains and updates the global browser index file
upon receiving a new file from an upper-level server
or updated browser file status from a client. For this
purpose, a port is reserved for a dedicated commu-
nication between a browser and the proxy.

The data integrity and communication anonymity issues
are simply addressed by requiring the proxy server to do
checksum, and handle the data searching and transferring
among the browsers, as described in Section 5. Fig. 11b
illustrates the organization of the proxy daemon and its
interface with the Squid proxy.

6.3 Overhead Measurement and Analysis

6.3.1 Additional Operations by CPUs and Networks

There are three major items of additional operations
involved in browsers and proxy if an object can be provided

by another browser instead of going to a Web server:

. Browser-index file searching: The searching is done in
the proxy after a request miss in the proxy. The
browser index file consists of all the active URL’s
MD5 digests of browsers. We have used the
searching facility for managing the cached docu-
ments in the Squid proxy. A hash function is used

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 765

Fig. 11. The organization of (a) client daemon and (b) proxy daemon to interface with a client browser and the proxy.

for the search, thus the search time is index file size
independent. Specifically, function storeGETPublic is
used, where function hash_lookup is called.

The searching time is denoted as Tindex. Run-
ning the Squid proxy on a Pentium III 1000 MHz
machine, we obtained the average searching time,
Tindex ¼ 0:0076 ms.

. Requesting service from a client: If the requested
document is found in a browser cache after the
index file searching, the proxy sends a request to the
identified client. A requesting message is set to
256 bytes. The communication time is denoted as
Treq and is dependent on a local area network speed.

. Data delivering between a client and the proxy: The
browser fetches the requested document and sends
it back to the proxy that delivers it to the requesting
client. The data transferring time is denoted as Tdata

and is dependent on the local area speed and size of
the document.

The additional browsers-aware service time is

Toverhead ¼ Tindex þ Treq þ Tdata:

We measured this service time by varying the size of the
requested document from browsers on a 100 Mb Ethernet
and obtained Toverhead ¼ �þ �D, where � ¼ 2:05 ms is the
startup time including both Tindex and Treq and � ¼ 1:10 is
the data transferring rate (ms/Kbytes) and D is the size in
Kbytes of the document transferred between a browser and
the proxy. Considering 8 Kbytes as the average size of a
Web document, we obtain Toverhead ¼ 10:85 ms from the
model, which is very close to the measurement result.

There are also other types of unique operations in the
browsers-aware proxy. For example, the user daemon in
each browser periodically sends the updated browser
content information to the proxy and the proxy updates
its index file accordingly. However, these operations are not
in the critical path of the browsers-aware caching system
and can be done when the browser, proxy, and networks
are not in a heavy demand.

One important question we want to ask is how much
latency time we can reduce with the support of the
browsers-aware service. Without such a service, a proxy
miss will consequently cause a request to a Web server and
a data delivering from the server to the proxy. The average
static HTML service time from a Web server is over 50 ms
without considering the network congestion [42]. In con-
trast, our measurements show that the browsers-aware
service can reduce this time to 10.85ms, a reduction of more
than 78 percent, if the document exists in one of the clients.

6.3.2 Additional Space Allocation

The additional space of browsers-aware is allocated for the
two data structures keeping track of reference counts to
manage data placement, and the browser index file.

First, linked lists are used in the proxy to count the number
of accesses to the same documents from different requesting
browsers. The size of this space requirement depends on
TH_BROWSER and the number of clients to access this
document. The value of TH_BROWSER reflects the trade off
between the amount of document duplications and intranet-
work communication overhead.Our simulation results show

that an optimal range of TH_BROWSER is 3 to 5. We use 5 to
estimate the space requirement. Our simulation results also
show that the average number of clients to access one
document is less than 6. For each element in the list, we use 2
bytes for LL:Client ID, 1 byte for LL:Access Count, and 5
bytes for LL:Pointer (see Section 3.2 for these three variables
in the data structure). The 2 bytes can record up to 65,536
different clients. The 1 byte can represent up to 256 accesses
which is much larger than the optimal TH_BROWSER we
used. The 5 bytes could represent up to 1,024Gaddress space.
We assume that the proxy has a 32 GByte cache, and an
average document size is 8 KByte. The proxy has about 4 M
Web pages. The proxy needs to allocate ð32GB=8KBÞ � ð2þ
1þ 5Þ � 6 ¼ 192 MBytes for the linked lists, which only
occupies 0.59 percent of the proxy cache and can be easily
placed in the main memory of a proxy server.

Second, a counter and a structure array are allocated
for each cached document that has been requested by
other clients. The array size is TH_PROXY. The value of
TH_PROXY also reflects the trade off between the
amount of document duplications and intranetwork
communication overhead. Our simulation results show
that an optimal range of TH_PROXY is 3 to 7. We use 7
in our calculation, which will overestimate the space
requirement. For each element of the array, we allocate 2
bytes for AC:Client ID, and 1 byte for AC:Access Count.
(See Section 3.2 for the two variables in the data
structure.) One byte is also enough for the counter
because we use TH_PROXY = 7 here. We assume that
each client has a large browser cache with a 80 MByte
cache, and an average document size is 8 KByte. Each
browser has about 10 K Web pages. The browser needs
to allocate about ð80MB=8KBÞ � ð7� ð2þ 1Þ þ 1Þ ¼ 220
KBytes, which only occupies 0.27 percent of a browser
cache. This requirement is overestimated because the
array and the counter are allocated to a document only if
this document is accessed by other clients.

Regarding the browser index file, we use the MD5 digest
for each URL item, which is 16 bytes per URL. Considering
an average browser cache of 80 MBytes containing
10,000 documents (8 KBytes for each), we need 160 KBytes
space in the index file for each browser. If a browsers-aware
proxy system manages 1,000 clients, we need 160 Mbytes
space for the index file, which represents a very small
portion of the space in a standard proxy. For example, for a
40 GByte proxy, the index file only occupies about 0.4
percent of the proxy space. We can also take advantage of a
Bloom filter, which is used to keep URL indices of
cooperative caches in [14], where each proxy builds a
Bloom filter based on the list of URLs of the cached files. A
bit array in each proxy is used to record the changes of
cached files. The proxies timely exchange the bit arrays
among themselves. Assume that there are still 1,000 clients
connected to one proxy. Each client has a browser which
has a 8MB cache. Similar to [14], we also assume that an
average document size is 8KB. Each browser has about 1K
Web pages. The Bloom filter can use 2KB to represent 1K
pages of each browser with a certain probability of false
positive. In this case, the proxy needs about 2000KB = 2MB
to store the whole browser index file. The structure of the

766 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

bloom filter is indeed space-efficient for index information
sharing among many parties, but may cause large compu-
tation overhead and high probability of false positive. There
is a trade off between the probability of a false positive and
the number of bits used for each entry. Less probability of
false positive means more storage requirement. We think
that, for the current scale of proxy-browser system, a simple
index structure presented in the paper without using the
bloom filter is both performance and space-efficient for the
browsers-aware scheme without causing false positive. The
bloom filter can be used in a proxy-browser system with
one proxy connecting with tens of thousands clients. In this
case, the space requirement for the browser index file really
becomes an issue.

6.3.3 CPU Overhead

In a browser, the additional CPU overhead comes from
searching structure arrays. The size of each array is
TH_PROXY. As we mentioned previously, an optimal
range of TH_PROXY is 3 to 7. So, handling such a search
for each request from a remote client requires Oð1Þ time.

In the proxy, the additional CPU overhead comes from
searching a linked list for a hit request. The CPU time
requirement for handling such a search for a document
from a remote client depends on the number of clients that
have requested the document. As we mentioned previously,
the average number of clients to access one document is less
than 6. Thus, handling such a search requires Oð1Þ time in
average. But, it is possible that there is a long list for one
document. The following strategies have been applied to
alleviate this possible delay. First, an element for a client
will be deleted from the list when the document has been
requested as many times as TH_BROWSER because the
client has been informed to cache this document. Second,
the list search can be overlapped with passing the
document to a client. In detail, when a client request hits
in the proxy, the proxy first sends the requested document
to the client. The client will spend some time viewing the
document. At the same time, the proxy searches for the list
of this document to check how many times this client has
requested this document. Afterward, the proxy will inform
the client whether to cache this document or not, depending
on the searching result. The searching process will not delay
response times to the clients.

7 RELATED WORK

Before Web caching research was active, authors in [11]
attempted to improve network file system performance by
coordinating the contents client caches and allowing
requests not satistifed by a client’s local in-memory file
cache to be satisfied by the cache of another client.

Client access patterns are characterized by several
research groups (see e.g., [3], [12], [19], and [34]). Kelly
[23] presents a method called cache-busting technique for
tracing browser requests, which does not require client
modifications, but only minor proxy modifications.

Numerous studies focus on local caching replacement
policies. For example, [2] and [21] provide theoretical
bases for approximate optimal performance and designing
effective online algorithms. Papers [8], [10], and [20]

propose practical caching replacement strategies and
showed promising experimental performance results.
However, cooperative caching can significantly improve
performance compared to local replacement [24] and has
been studied in both the horizontal and vertical directions.

In the horizontal direction, cooperative proxy caches are
studied in many papers (e.g., [14], [17], [27], [35], [40]),
which focus on the proxies at the same level. These papers
provided different ways of attempting to effectively sharing
files among same level proxies, such as how to locate a file
cached in another cache precisely and quickly, and how to
place a file as close as possible to a proxy requesting the file
with highest probability. Cooperating caches of browsers
and their proxy have not been studied in previous work.
We believe there are two reasons: 1) A browser cache was
initially developed as a small data buffer with a few simple
data manipulation operations. Users were not supposed to
be able to retain the cached data with a high quality of
spatial and temporal locality. With a significant increase of
memory and disk capacity in workstations and PCs and
with the improvement of Web browser caching capability,
users are able to enlarge the browser cache size in order to
access more cached documents and to retain the documents
in an organized manner for a longer period of time. 2) Data
integrity and user privacy are concerns in browser sharing.
Existing security technologies can be further improved to
ensure the integrity and anonymity among browsers. Thus,
cooperating caches of browsers and their proxy are another
practical way to improve caching performance. None of the
previous studies consider file duplications among same
level proxies. A practical reason for allowing file duplica-
tions among proxies is because proxies are normally far
from each other in locations. Emphasizing eliminating file
duplications too highly could cause too many requests to
remote proxies so that the overall response time might be
hurt. However, browsers connecting to the same proxy are
usually located nearby, thus, reducing file duplications
among browsers enables more files to be shared to improve
overall performance.

In the vertical direction, Web proxy workloads from
different levels of a caching hierarchy are studied in [26].
Korupolu et al. [25] develop an optimal algorithm for
hierarchical placement problem. Korupolu and Dahlin [24]
and Tewari et al. [33] propose practical schemes to
cooperate hierarchical proxies by hierarchical GreedyDual
replacement algorithm and placement algorithm that cache
files close to clients. They conclude that hierarchical
cooperative caching can significantly improve performance.
The study in [13] is not so optimistic about hierarchical
cooperative caching and concludes that the performance in
terms of response time cannot be improved without paying
careful attention to details of cooperation design to
eliminate overhead, such as better distributing network
traffic and avoiding congested routes. Two previous studies
attempt to reduce file duplications in hierarchical coopera-
tive caching. Che et al. [9] propose a hierarchical coopera-
tive caching architecture to avoid a requested file cached in
each intermediate cache. A cache is viewed as a filter with
its cutoff frequency equal to the inverse of the characteristic
time. Files with access frequencies lower than this cutoff

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 767

frequency have a good chance of passing through the cache

without cache hits. A collaborative method is proposed in

[41] for hierarchical caching in proxy servers to reduce

duplicate caching between a proxy and its parent or higher-

level proxies in the hierarchy. In particular, a collaboration

protocol passes caching decision information along with the

document to the next lower-level proxy to facilitate its

caching decision. Our work focuses on a proxy-browser

system, which is a different issue of reducing duplication in

the different-level proxies. Our proposed scheme not only

reduces the duplications between different-level caches

(between proxy and browsers), but also reduces the

duplications at the same-level caches (among browsers).

Recently, a pure P2P Internet caching framework, Squirrel,

has been proposed [22]. In this decentralized environment,

proxy does not exist and document sharing is solely

conducted among client browsers. We believe the client/

server model will always coexist with pure P2P model and

a hybrid P2P model, such as our enhanced browsers-aware

caching system, can combine the merits of both centralized

and decentralized systems.

8 CONCLUSION

We have demonstrated trends of decreasing proxy hit ratios

and increasing access diversity and significant duplications

in existing Web caching systems. In order to effectively

utilize additional caching space and available bandwidths

among browsers, we propose a peer-to-peer Web caching

management scheme: browsers-aware caching. We show that

the performance of our scheme compares very favorably

with the performance of near-optimal offline Web caching

algorithms. Our prototype implementation further shows

the effectiveness of the proposed scheme and addresses the

issues of data integrity and communication anonymity for

browsers-aware caching systems. This work can also be

extended for a more complex relationship between multiple

proxies and clients, such as the structure presented in [36].

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for

their critical and constructive comments on this paper. They

would also like to thank Bill Bynum for reading the paper

and his suggestions. This work is supported in part by the

US National Science Foundation under grants CCR-

9812187, EIA-9977030, and CCR-0098055, and by a USENIX

Research Scholarship.

REFERENCES

[1] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A.
Fox, “Caching Proxies: Limitations and Potentials,” Proc. Fourth
Int’l World Wide Web Conf., Dec. 1995.

[2] S. Albers, S. Arora, and S. Khanna, “Page Replacement for General
Caching Problems,” Proc. 10th Ann. ACM-SIAM Symp. Discrete
Algorithms (SODA ’99), pp. 31-40, 1999.

[3] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in
Web Client Access Patterns: Characteristics and Caching Implica-
tions,” World Wide Web J., vol. 2, no. 1, pp. 15-28, Jan. 1999.

[4] L.A. Belady, “A Study of Replacement Algorithms for Virtual
Storage Computers,” IBM Systems J., vol. 5, pp. 78-101, 1966.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM, 1999.

[6] Boeing log files, ftp://researchsmp2.cc.vt.edu/pub/boeing/,
2003.

[7] BU traces, ftp://cs-ftp.bu.edu/techreports/1995-010-www.client
-traces.tar.gz and ftp://cs-ftp.bu.edu/techreports/1999-011-user
trace-98.gz, 2003.

[8] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. USENIX Symp. Internet Technologies and
Systems, Dec. 1997.

[9] H. Che, Z. Wang, and Y. Tung, “Analysis and Design of
Hierarchical Web Caching Systems,” Proc. IEEE INFOCOM 2001,
Apr. 2001.

[10] E. Cohen and H. Kaplan, “LP-Based Analysis of Greedy-Dual-
Size,” Proc. 10th Ann. ACM-SIAM Symp. Discrete Algorithms,
pp. 879-880, Jan. 1999.

[11] M.D. Dahlin, R.Y. Wang, T.E. Anderson, and D.A. Patterson,
“Cooperative Caching: Using Remote Client Memory to Improve
File System Performance,” Proc. First Symp. Operating Systems
Design and Implementation, Nov. 1994.

[12] B.M. Duska, D. Marwood, and M.J. Feeley, “The Measured Access
Characteristics of World-Wide-Web Client Proxy Caches,” Proc.
USENIX Symp. Internet Technologies and Systems, Dec. 1997.

[13] S.G. Dykes and K.A. Robbins, “A Viability Analysis of Coopera-
tive Proxy Caching,” Proc. IEEE INFOCOM 2001, Apr. 2001.

[14] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” Proc. 1998
SIGCOMM Conf., pp. 254-265, 1998.

[15] E. Gabber, P. Gibbons, D. Kristol, Y. Matias, and A. Mayer,
“Consistent, Yet Anonymous, Web Access with LPWA,” Comm.
ACM, vol. 42, no. 2, pp. 42-47, Feb. 1999.

[16] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer, “How to Make
Personalized Web Browsing Simple, Secure, and Anonymous,”
Proc. Conf. Financial Cryptography, 1997.

[17] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse, Recycle:
An Approach to Building Large Internet Caches,” Proc. Sixth
Workshop Hot Topics in Operating Systems, May 1997.

[18] L. Gong, “JXTA: A Network Programming Environment,” IEEE
Internet Computing, vol. 5, no. 3, May/June 2001.

[19] S.D. Gribble and E.A. Brewer, “System Design Issues for Internet
Middleware Services: Deductions from a Large Client Trace,”
Proc. 1997 Usenix Symp. Internet Technologies and Systems, Dec.
1997.

[20] S. Jin and A. Bestavros, “Popularity-Aware GreedyDual-Size Web
Proxy Caching Algorithms,” Proc. 20th Int’l Conf. Distributed
Computing Systems (ICDCS ’00), Apr. 2000.

[21] S. Irani, “Page Replacement with Multi-Size Pages and Applica-
tions to Web Caching,” Proc. 29th Ann. ACM Symp. Theory of
Computing (STOC ’97), pp. 701-710, 1997.

[22] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A Decentralized
Peer-to-Peer Web Caching,” Proc. 21st ACM Symp. Principles of
Distributed Computing, 2002.

[23] T. Kelly, “Thin-Client Web Access Patterns: Measurements from a
Cache-Busting Proxy,” Computer Comm. vol. 25, pp. 357-366, 2002.

[24] M.R. Korupolu and M. Dahlin, “Coordinated Placement and
Replacement for Large-Scale Distributed Cached,” IEEE Trans.
Knowledge and Data Eng., vol. 13, 2001.

[25] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman, “Placement
Algorithms for Hierarchical Cooperative Caching,” Proc. 10th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA ’99), pp. 586-595,
Jan. 1999.

[26] A. Mahanti, C. Williamson, and D. Eager, “Traffic Analysis of a
Web Proxy Caching Hierarchy,” IEEE Network, special issue on
Web performance, vol. 14, no. 3, pp. 16-23, May/June 2000.

[27] R. Malpani, J. Lorch, and D. Berger, “Making World Wide Web
Caching Servers Cooperate,” Proc. Fourth Int’l World Wide Web
Conf., Dec. 1995.

[28] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[29] Nat’l Lab Applied Network Research, http://www.ircache.net/,
Sanitized access logs: ftp://ircache.nlanr.net/Traces/, and Statis-
tics: http://www.ircache.net/Cache/Statistics/, 2003.

[30] K. Psounis and B. Prabhakar, “A Randomized Web-Cache
Replacement Scheme,” Proc. IEEE INFOCOM 2001, Apr. 2001.

768 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

[31] R. Rivest, “The MD5 Message-Digest Algorithm,” Internet RFC/
STD/FYI/BCP Archives, request for comments: 1321, (http://www.
faqs.org/rfcs/rfc1321.html), Apr. 1992.

[32] A. Rousskov and V. Soloviev, “A Performance Study of the Squid
Proxy on HTTP/1.0,” World Wide Web, vol. 2, nos. 1-2, pp. 47-67,
Jan. 1999. Also available at “On Performance of Caching Proxies,”
Proc. SIGMETRICS ’98, pp. 272-273, 1998.

[33] R. Tewari, M. Dahlin, H.M. Vin, and J.S. Kay, “Design
Considerations for Distributed Caching on the Internet,” Proc.
19th IEEE Int’l Conf. Distributed Computing Systems (ICDCS), May
1999.

[34] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T.
Landray, D. Pinnel, A. Karlin, and H. Levy, “Organization-Based
Analysis of Web-Object Sharing and Caching,” Proc. Second
USENIX Symp. Internet Technologies and Systems, Oct. 1999.

[35] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy, “On the Scale and Performance of Cooperative Web
Proxy Caching,” Proc. 17th ACM Symp. Operating System Principles
(SOSP), pp. 16-31, Dec. 1999.

[36] Z. Xiao and K.P. Birman, “Providing Efficient, Robust Error
Recovery through Randomization,” Proc. Int’l Workshop Applied
Reliable Group Comm., (jointly held with the 21st Int’l Conf.
Distributed Computing Systems), Apr. 2001.

[37] L. Xiao and X. Zhang, “Exploiting Neglected Data Locality in
Browsers,” Proc. 10th Int’l World Wide Web Conf. (WWW10), May
2001. (an extended abstract)

[38] L. Xiao, Z. Xu, and X. Zhang, “Low Cost and Reliable Mutual
Anonymity Protocols in Peer-to-Peer Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 9, pp. 829-840, Sept.
2003.

[39] L. Xiao, X. Zhang, and Z. Xu, “A Reliable and Scalable Peer-to-
Peer Web Document Sharing System,” Proc. 2002 Int’l Parallel and
Distributed Processing Symp., (IPDPS ’2002), 2002.

[40] J. Yang, W. Wang, and R. Muntz, “Collaborative Web Caching
Based on Proxy Affinities,” Proc. ACM SIGMETRICS 2000, pp. 78-
89, June 2000.

[41] P.S. Yu and E.A. MacNair, “Performance Study of a Collaborative
Method for Hierarchical Caching in Proxy Servers,” Proc. Seventh
Int’l World Wide Web Conf., Apr. 1998.

[42] H. Zhu and T. Yang, “Class-Based Cache Management for
Dynamic Web Content,” Proc. IEEE INFOCOM 2001, Apr. 2001.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Polytech-
nic University, China, and the PhD degree in
computer science from the College of William
and Mary in 2002. She is an assistant professor
of computer science and engineering at Michi-
gan State University. She is a recipient of the
USENIX Fellowship for her PhD dissertation
research from 2001 to 2002. Her research
interests are in the areas of distributed and

Internet systems, system resource management, and design and
implementation of experimental algorithms. She is a member of the
ACM and the IEEE.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982 and the MS and PhD degrees
in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is the Lettie Pate Evans Professor of
Computer Science and the department chair at
the College of William and Mary. He was the
program director of advanced computational
research at the US National Science Foundation

from 2001 to 2003. He is a past member of the editorial board of the
IEEE Transactions on Parallel and Distributed Systems and currently
serves as an associate editor of IEEE Micro. His research interests are
in the areas of parallel and distributed computing and systems and
computer architecture. He is a senior member of the IEEE.

Artur Andrzejak received the PhD degree in
computer science from the Swiss Federal
Institute of Technology (ETH Zurich) in 2000.
He is currently a researcher at Zuse-Institute
Berlin, Germany. He was a postdoctoral re-
searcher at the Hewlett-Packard Labs in Palo
Alto, California, from 2001 to 2002. His research
interests include utility computing, systems
management, and P2P computing.

Songqing Chen received the BS and MS
degrees in computer science from Huazhong
University of Science and Technology, China, in
1997 and 1999, respectively. He is a PhD
candidate in computer science at the College
of William and Mary. His research interests are
distributed and Internet systems and kernel
systems programming. He is a student member
of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIAO ET AL.: BUILDING A LARGE AND EFFICIENT HYBRID PEER-TO-PEER INTERNET CACHING SYSTEM 769

