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Abstract—The wide-spread phenomenon of software (running
image) aging is known to cause performance degradation, tran-
sient failures or even crashes of applications. In this work we
describe first a method for monitoring and modeling of perfor-
mance degradation in SOA applications, particularly application
servers. This method works for a large class of the aging processes
caused by resource depletion (e.g. memory leaks). It can be
deployed non-intrusively in a production environment, under
arbitrary service request distributions. Based on this schema
we investigate in the second part of the paper how machine
learning (classification) algorithms can be used for proactive
detection of performance degradation or sudden drops caused
by aging. We leverage the predictive power of these algorithms
with several techniques to make the measurement-based aging
models more adaptive and more robust against transient failures.
We evaluate several state-of-the-art classification methods for
their accuracy and computational efficiency in this scenario.
The studies are performed on a data set generated by a TPC-
W benchmark instrumented with a memory leak injector. The
results show that the probing method yields accurate aging
models with low overhead and the machine learning approach
gives statistically significant short-term predictions of degrading
application performance. Both approaches can be used directly
to fight aging via adaptive software rejuvenation (restart of the
application), for operator alerting, or for short-term capacity
planning.

I. INTRODUCTION

Software (running image) aging is defined as the gradual

performance degradation of running software images due to

unreleased resources, accumulation of numerical errors, and

file system degradation [10]. This undesired phenomenon

is especially visible in long-running software such as SOA

applications (web and application servers) and always-on

applications - software deployed frequently in enterprise and

utility computing environments. The management costs caused

by this problem are considerable as it might be hard to pinpoint

this problem in complex systems, and even if identified, it can-

not be removed due to “black box” nature of the applications

[3].

While the optimal solution to this problem is to fix the

software bugs, in practice this can be rarely applied due

to application complexity, lack of source code, or budget

constraints. A common solution termed software rejuvenation
is to restart the software after certain time, at a specific

performance degradation level, or by other criteria [14], [3].

Recently this approach has been investigated in context of

application replication in order to avoid service outages [2].

To deploy rejuvenation effectively, models of the aging

process are needed. They allow to estimate the current or

future progress of the performance degradation, and facilitate

scheduling of optimal rejuvenation times. This approach is

known as the adaptive or proactive software rejuvenation [6],

[8]. Moreover, such models can be useful in a variety of

management tasks, such as alerting of operators of anticipated

crash, or short-term capacity planning.

In this work we make two contributions concerning mod-

eling of aging processes. First, we consider the problem

of obtaining the performance measurements or a complete

performance model of the an application or web server in

a production environment, i.e. without any dedicated testing

setup. We understand as performance the maximum number

of requests which a server can process per second. In a

production environment the service request rates are usually

lower, and so this performance is “hidden” until it drops

to an intolerable level. We propose an approach based on

adaptive probing which allows for non-intrusive monitoring

and creation of accurate performance models as a function of

performed work (served requests). We evaluate this technique

and show that it yields accurate performance models without

significant acceleration of aging.

In the second part of the paper we study the usage of clas-

sification algorithms for predicting application performance.

The selected algorithms include Naive Bayes, decision trees,

and Support Vector Machines [18]. They are computationally

efficient and can be trained on-line and incrementally. This

allows for an early deployment of the predictors (i.e. with

relatively little historical data) and facilitates an automated

model adaptation. Furthermore, by using certain inputs we

allow the algorithm to adapt to transient changes of the

performance levels.

The proposed prediction methods are evaluated via exten-

sive studies on a data set generated by a TPC-W benchmark

instrumented with a memory leak injector. The errors (memory

leaks) are injected with each request, yet we inject non-

deterministically additional leaks in order to test the adaptation

to transient failures. The results show that the classification

algorithms make accurate and statistically significant short-
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Figure 1. Architecture of the modeling and rejuvenation framework

term predictions of the synthetic aging processes in TPC-W.

Moreover, the predictions are accurate already with a small

training sets. This allows for more frequent classifier training

and so higher adaptability.

Summarizing, our findings show that the presented methods

are useful and practical for modeling and prediction of aging

under production settings.

The paper is organized as follows. Section II describes

the probing approach for measuring server performance under

production settings. In Section III we present the method for

classification-based prediction of aging processes. Section IV

discusses the experimental evaluation of both approaches. In

Section V we outline the related work, and finally we state

conclusions in Section VI.

II. PERFORMANCE MONITORING AND MODELING FOR

SOA APPLICATIONS

The central term of this paper is performance of an applica-

tion server: the maximum number of requests it could serve at

a given moment. We denote it as P and express it in number

of requests per second. The related variables are: request rate
(number of incoming requests per second) and the service rate
(number of actually served requests per second). Of course,

the latter is never larger than the performance while the request

rate might be above it.

For applications with degrading or variable performance, it

is useful to have a model or a predictor of the performance due

to the reasons discussed above. Note that the current service

rate might be quite unrelated to the current performance (from

being much lower to almost equal), and so it gives little clues

for estimating server performance or the progress of the aging.

There are several approaches for measurement-based mod-

eling of aging processes, including Markov chains [17], time-

based models [14], and work-based models [3]. The later

estimate the aging indicator as a function of the number

of work done since restart, which is in case of application

servers the number of served requests. Such models have

several advantages: they describe accurately a wide class of

aging processes caused by resource depletion such as memory

leaks. Furthermore, they are independent of the request or

load distribution, and so more universal than time-dependent

models. Finally, in SOA applications the work done can be

easily approximated. In the following we understand as an

aging (or a performance) model a function which approximates

the server performance depending on the number of served

requests.

Obtaining aging models under real-world conditions can

be tedious and costly. In case of work-based models, two

alternatives exist. The first option is to put an application under

a stress test by using a request rated exceeding its perfor-

mance, and measure the performance change [3]. Although

this process shortens considerable time until a complete aging

cycle is recorded, it requires a dedicated environment and time,

increases management costs, and might not accurately reflect

the production scenario. While we have used this method in

laboratory conditions in order to estimate the quality of our

approach, it is rarely feasible in a production setting.

The second option is to use the “natural” client request

traffic in a production setting to model performance. The

essential difficulty is that it gives the opportunity to learn

the true performance only if it contains load which exceeds

the server capacity. This is very rare, uncontrollable and

occurs usually only under abnormal conditions. Our initial

experiments have shown that the performance models obtained

in this way are very inaccurate, and describe the aging profile

only shortly before the complete crash, thus providing little

predictive power. Furthermore, the approach requires addi-

tional instrumentation to count the number of dropped client
requests.

A. Determining performance by probing

To overcome these issues of the modeling in the production

setting we propose the following approach. We repeatedly

probe the server via artificially created request groups (called

probes) with high request rate exceeding expected perfor-

mance. By measuring the number of requests serviced and

dropped by the application we can accurately determine the

momentary performance. The probing requests are considered

as dropped if they are not serviced at all or if the response

latency exceeds a tolerable threshold.

Special attention must be given to generating such probing

requests. The most promising way seems to be the replaying

the previously recorded client interactions, especially if these

interactions are more involved. Such request groups can be

generated from simulated browsers like those in the TPC-

W benchmark [13]. Note that such probes must be issued

and measured externally to the application, so that monitoring

techniques like DTrace [5] are of limited use.

In order to update the above-mentioned performance model,

the knowledge of the number of served requests since the last

rejuvenation is necessary. This can be implemented either by

a proxy which counts the number of served client requests (or,

as approximation, the number of incoming client requests), or

by direct querying of the application statistics, see Figure 1.

The second method is more intrusive yet incurs less overhead.

The accuracy of the obtained models determines the ef-

ficiency of the above-discussed management solutions. For

example, a model understating the true performance might

trigger too frequent healing or rejuvenation actions, while



overestimating the true performance could lead to an unex-

pected crash. To quantify this variable in a laboratory setup

we use the mean squared error (MSE) and the mean absolute

error (MAE) of the deviations between the true performance

(measured under burst load, see Section IV-A) and the model

generated by our method. Prior to the computation of these

variables, both models are gridded to obtain equal number of

sampling points.

B. Probing overhead

Under the assumption that the performance degradation

depends on the number of requests our probing will accelerate

the aging. The magnitude of this undesirable effect can be

measured by the following variable called overhead (requests

are counted over the whole rejuvenation cycle):

% Oh = 100 # served probing requests
# all served requests

. (1)

Clearly, the more accurate model is requested, the more

frequent probing is necessary, and so the overhead increases.

However, for a fixed accuracy level the overhead can be

minimized by the following measures.

First, the probe triggering policy can be tweaked. A naive

policy is to issue probes in regular time intervals. This time-
based triggering policy creates unnecessary overhead if the

client request rate is low (since a large share of the served

requests might come from the probes). A better solution is

to issue a probe after every fixed number of served requests.

We call it a request-based triggering policy. Under our aging

process assumptions this schema should yield good perfor-

mance models even if the time interval between probes is

large: a small number of client requests served between probes

implies small performance change. In the experimental part we

evaluate the relation of this overhead and the model accuracy

for both policies and their parameters.

Secondly, the probing demand spikes should be long enough

to create dropped requests but as short as possible. A suitable

duration might depend on many factors, such as maximum tol-

erable response latency threshold, application stress response

patterns (it might store not served requests and respond to them

with larger latency), current client request rate, and others.

As a consequence, application-specific experimental testing is

needed.

As another undesirable side effect, client requests might

be dropped during the probing. The solutions here include

triggering of the probing only during periods of lower than

average requests rates, or delaying the request via a proxy,

and replaying them after the probing phase is finished.

C. Simulation details

We have used simulations based on real data to evaluate the

approach. Each simulation consisted of the following phases.

One. The performance of an application server under the

TPC-W benchmark with a memory-leak injector is

recorded under a request rate exceeding maximum

performance (see Section IV-A). The sampled values

are stored in a model “container” which returns per-

formance values for a specified number of requests.

For later performance queries, the values between

original samples are obtained by linear interpolation.

Two. We generate a sequence of requests (over simulated

time) and emulate the behavior of the application

server. Essentially, for each simulation step we de-

termine its time duration and the number of the

requests to be served. The implied request rate is

compared with the current server performance, and

the number of served and the number of dropped

requests is recorded. Also the sum of served requests

(of clients and of probes) is updated. The request

generation is done by interweaving simulation steps

for the probing requests or for the client requests.

The “probing steps” have fixed time length and

number of requests, while their triggering is done

according to the time-based or request-based policy.

The “client steps” are equidistant in time, yet have

different number of requests per step according to

the distribution type and its parameters.

Three. Finally use the proposed method to reconstruct the

original performance model. For each time step of

the trace from the previous phase we determine

whether any requests have been dropped. If this is

the case, we can measure the server performance,

and update the reconstructed performance model.

For each step the sum of the requests served since

rejuvenation is recorded. The reconstruction ends

when the ratio of dropped requests to served requests

is larger than 0.99 which indicates that the server is

crashing.

For the phase two we have used two types of request gen-

erators. The first, “tpc-w” is taken directly from the TPC-W

benchmark. Here a set of b emulated browsers issues page

requests independently. After each request, a browser waits a

“think time” which is governed by the exponential distribution

with a mean of 7 (seconds). This generator is considered as a

good approximation of real web server load [1]. The second

generator named “real” replays (scaled) request rate of the

campus-wide web server at the University of Saskatchewan

[4] (7 months starting 6/01/1995). This trace features daily

and weekly fluctuations (see left figure of Figure 3), while the

“tpc-w” generator is more uniform on larger time scales.

III. PREDICTING PERFORMANCE BY MACHINE LEARNING

The aging models based on the method from Section II

assume that the aging process is “stable” and looks similar in

each rejuvenation cycle. While this applies to a large number

of aging processes caused by resource depletion [3], such

models might fail if the dependencies are more complex or

transient failures occur. In a such scenario, we propose use ma-

chine learning classification methods to predict performance

in the near future. Such algorithms are capable to model im-

plicitly complex relationships, and become more accurate with

growing amount of the historical data. In general, this method



A f B

Figure 2. Attribute selection process for a single prediction target

is capable to predict the server performance or to predict the

value of any other aging indicator: a system variable which

most accurately describes the progress of running image aging.

A. Key ideas

We assume a scenario of a long-running application such

as web service, web server, or an enterprise always-on ap-

plication. We further assume that the application runs in

an environment which allows for measuring its performance

(by an approach presented in Section II or some other) and

possibly other other system statistics. The collected data is

fed periodically to an aging and rejuvenation manager which

creates a model and initiates rejuvenation actions, see Figure

1.

We use a data mining classification algorithm such as

Naive Bayes [18] to obtain an implicit model of the aging

process. This representation can be used directly to predict

a (discretized) performance value. The advantage of classifi-

cation algorithms is that we can use simultaneous multiple

data inputs for the model. This can increase accuracy and

allow for incorporating potential correlations between different

applications, OS components, and even different hosts.

One of the algorithm inputs is the instantaneous value of the

performance to be predicted, and some averages thereof. This

helps the classifier to accommodate for transient performance

changes which might be not reflected by other inputs. For

example, assume that the performance drops suddenly by 50%
due to a very rare bug and this change is not visible from

other inputs like number of served requests or CPU usage.

Including the current performance as an input is likely to help

the classifier to “override” the learned aging curve and predict

a performance level adjusted to the currently observed one.

The training of the prediction algorithm takes place incre-

mentally and on-line. In this scenario, the classifier inputs and

the performance indicator (prediction target) are recorded on-

line (during deployment) and added incrementally as further

training examples. In this way, the prediction algorithm does

not need any special off-line training, it can be used produc-

tively shortly after the system deployment, and its accuracy

increases with time. Furthermore, it is possible to use only

the training data from some recent time window in order to

adapt to changes in the aging profile.

B. Prediction via classification algorithms

We first describe the terminology and background on the

classification algorithms. A classifier is a function f : V → W
which assigns to a vector of values v ∈ V a label w ∈ W [18].

Here vector v has usually length larger one, and each of its

columns corresponds to a specific type of an input scalar called

attribute. In the setting of this paper, the labels are discretized

levels of the performance P measured at a certain time t′.
For example, if performance P at time t′ is discretized into

20 levels, label w = 1 covers P values between 0% and 5%
of the maximum, and label w = 20 corresponds to P values

between 95% and 100% of the maximum performance. The

attributes in our scenario are application metrics (and functions

thereof) collected at some time t < t′. In this paper we used

as attributes the application performance at time t < t′, time

passed since last rejuvenation (measured at t), and functions

of both (such as moving averages of different lengths and

their differences). Of course, also additional inputs such as

CPU, memory and disk utilization could be used, however

our application instrumentation does not allow to collect them

at this stage.

Before predictions can take place, classifier f is presented

a set of examples (v, w) (attribute vectors with correct labels)

from which it attempts to build a model of relationships

between vector values and labels. After this so-called training
or fitting phase predictions are performed: a vector v with an

unknown label is given, and then the label f(v) is computed.

Note that in each training example (w, v) there is some

(usually fixed) offset between the times when inputs for w
and those for v are collected. This offset is called a lag and

it describes how far into the future we wish to predict.

It is usually unclear which functions of the raw inputs

should constitute the attribute vectors. An approach is to

generate many such functions and then prune them until only

the significant and mutually uncorrelated ones remain. This

so-called attribute selection is an essential step preceding the

training process. Due to the phenomenon called “curse of

dimensionality”, too many attributes in relation to the number

of examples can easily lead to overfitting. We have developed

a two-stage process which first selects the relevant (correlated)

inputs/resources (phase A), then computes a pool of functions

on traces of these inputs (phase f ), and finally selects the

final attributes from the pool of functions (phase B), see

Figure 2. Since phase A is essentially a trace correlation

analysis with low running time, we can specify a large set of

inputs/resources (on the order of 100) as a potential input. As

a by-product of this phase a ranked list of inputs potentially

influencing the behavior of the target is produced. In phase

B we apply the standard mechanism which prefers attributes

with high correlation to the target yet low redundancy [9]. As

noted above, we use currently only two inputs but this scalable

selection approach will become essential when additional

system metrics are collected.

The process of attribute selection is usually time consuming

but needs to be performed only once for a prediction target.



The subsequent classifier training and testing require few

seconds to minutes depending on the classification technique

and size of the input. We have used in our study three major

classification algorithms and a “primitive” zero-rule algorithm

from the WEKA library of data mining algorithms [18].

We have used default WEKA options. The algorithms are

specifically:

• J48 - the classical algorithm for generation of a decision

tree, in this case a pruned or unpruned C4.5 decision tree

[16]

• NaiveBayes - a simple yet computationally efficient prob-

abilistic classifier based on applying Bayes’ Theorem

with the (“naive”) assumption that the attributes have

independent probability distributions [11]

• SMO - a Support Vector Machine based on John Platt’s

sequential minimal optimization algorithm [15]

• ZeroR - the 0-R classifier predicts in our case the mode of

the label indices (approximately the mean of discretized

performance given by the training examples) [18]. This

classifier has been included for the purpose of base

comparison against an unsophisticated prediction schema.

As the above algorithms are well-known and extensively

described in the machine learning literature, we omit the

details due to space constraints.

C. The prediction process

In our study the raw data is a series of samples, each

composed of the recorded application performance and the

time since last rejuvenation at the sampling time (see Section

IV-A). During a prediction run this data is read in and for each

sample a vector of attribute values is computed, together with

the discretized (and time shifted) target value. The attributes

are functions of the raw inputs determined by selection process

described above. For example, the attributes for the prediction

process with a lag of 50 samples and the samples 1 to

2246 as training examples had 29 attributes, including simple

moving averages (SMA) of lengths 2, 5, 10, 20, 40, 120 of the

performance, SMAs of the time since rejuvenation of lengths

2, 5, 10, 20, 40, 60, 120, as well as several difference functions

of two SMAs on the same input (for example, SMA of length

120 minus SMA of length 2).

The prediction process consists of the alternating training

and prediction phases. At first some set of the first S samples

is used to build an initial model. Then R predictions are

performed for samples S + 1 till S + R. Here a new model is

build which uses at most T samples prior to sample S+R+1.

This model is used for the following R predictions for samples

S + R + 1 till S + 2R etc. This sequence is repeated until the

end of the series. This procedure is known as walk-forward
testing. It ensures adaptability to new data due to retraining

every R samples, and prevents overfitting since each prediction

is made for a sample which has not been previously used for

training. The number of conducted predictions is total number

of samples less S.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup
To evaluate the methods described above we are using data

obtained from industry-typical web service applications. The

data set comes from experiments with a Java implementation

of the TPC-W benchmark. This benchmark resembles a on-line

book store and uses Tomcat as the container and MySQL as the

database. Since the original TPC-W implementation does not

show any visible aging problem we have implemented a small

fault-injector that works as a resource parasite: it consumes

system resources in competition with the application [8]. The

memory leak of size 1024 bytes is injected each time a request

is served. In addition, we inject non-deterministically memory

leaks memory leaks of size 1 to 100 kilobytes in order to

simulate transient errors and non-deterministic aging effects.

The rejuvenation time for the TPC-W software ranged between

12 and 15 seconds.
To speed-up the occurrence of software aging we deployed

a multi-client tool called QUAKE. This tool permits the

launching of simultaneous multiple clients that execute re-

quests in a server under-test. All together, we have used

a cluster of 12 machines: 10 running the client benchmark

application, one database server and another server running the

aging application. All the machines are interconnected with a

100Mbps Ethernet switch.
In these studies, we used the burst distribution to test the

maximum performance of the application and sampled this

every 30 seconds. After the request rate slow down to below

1 requests/s (which took place after approximately 2 hours

and 15 minutes) we restarted the application (i.e. performed

rejuvenation). This experiment has been repeated 25 times.

The concatenated performance plot is shown in Figure 4 (left).

While the performance curves are similar in the first 60% of

each cycle, they differ in the remaining part of the cycle due

to non-deterministic memory leaks.

B. Reconstructing aging models
In this section we evaluate quantitatively results of the

simulations described in Section II-C. We have used for the

original performance model data from the first of the 25
rejuvenation cycles described in Section IV-A (other datasets

behaved similarly). The goal of the evaluation was to compare

the two approaches for probe triggering and find in each case

parameter values which incur low overhead yet yield highly

accurate models.
To this aim, we first performed experiments with the time-

based probe triggering method, and used as the interval T after

which a new probe is inserted the values 5s, 10s, 30s, 1min,

2min, 5min, 10min, 30min, 1h, and 2h. In the request-based

triggering mode a new probe has been inserted every D =
50, 125, 250, 500, 1000, 2000, 4000, 8000, 16000, and 32000

served requests. The number of requests per probe was 100,

and the probe duration 1s. We set 30s as the resolution of the

time trace from phase two.
To compensate for the effects of a particular request rate

distribution in the phase two of the simulation (Section II-C)
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Figure 3. Request rate history of a simulation (left); original and rebuilt performance model (right)

we have performed for each of the above cases 11 simulations

with different distributions. The first 6 simulations were done

with the “tpc-w” distribution and the following number of

emulated browsers: 1, 5, 10, 15, 20, 25. For the “real” request

rate distribution we used different multiplication factors for the

original request rate, an used the values 1, . . . , 5. These values

have been chosen such that the request rates cover the full

range from almost 0 to the maximum server performance. In

each simulation the mean squared error (MSE) and the mean

absolute error (MAE) of the of the reconstruction accuracy

has been recorded, as well as the overhead Oh (Equation (1)).

Then we averaged these results over 11 cases corresponding

to the same T or D values.

Table I states these averaged results. As expected, there

is a trade-off between accuracy and overhead. Moreover,

the request-based probe triggering method allows for slightly

higher model accuracy (lower MSE or MAE) than the time-

based method at the same overhead level. For example, at

about 2.5% overhead level the time-based method has an MSE

of almost 17, while the MSE of the request-based method is

less than 9.

Figure 3 illustrates a typical request rate history (of the

phase two) and the corresponding original and reconstructed

models. Here request-based probe triggering is used with D =
4000, and the “real” request rate distribution with a scaling

factor of 3. The left figure shows the time plot of the request

rate (client and probing requests), while the right figure shows

the original and the reconstructed performance models. As

visible in the plot, the rebuilt model overestimates initially the

performance (with the default value of 100 requests/second)

until the first probe is issued. The results here are: MSE =

9.32, MAE = 0.60, and Oh = 1.22%. In general, the results

show that our probing approach yields sufficiently accurate

performance models with a negligible overhead.

T MSE MAE % Oh
5s 0.11 0.13 76.01

10s 0.12 0.13 76.08
30s 0.71 0.16 51.46

1min 1.64 0.20 36.38
2min 2.03 0.22 23.90
5min 3.30 0.28 12.29

10min 5.00 0.36 6.92
30min 16.92 0.71 2.56

1h 39.84 1.31 1.32
2h 36.04 1.32 0.68

D MSE MAE % Oh
50 0.35 0.15 87.08

125 2.01 0.19 35.87
250 2.34 0.23 18.60
500 3.02 0.28 9.50

1000 3.93 0.34 4.81
2000 8.55 0.51 2.42
4000 18.64 0.79 1.22
8000 31.27 1.22 0.62
16e3 72.94 2.29 0.32
32e3 136.87 3.75 0.16

Table I
AVERAGED ACCURACY AND OVERHEAD OF THE MODEL

RECONSTRUCTION (TOP: TIME-BASED PROBE TRIGGERING, BOTTOM:
REQUEST-BASED PROBE TRIGGERING)

C. Prediction experiments and their evaluation

We have used different combinations of algorithms and

settings to conduct all together 96 prediction runs. The total

processing time (including attribute selection) was in 55 min-

utes using Java 1.5.0_10 on a single core of a 2.16 GHz Intel

Core Duo (T2600) laptop running under Windows XP. With

approximately 5250 predictions per experiment the amortized

time per prediction is on average 6.5 milliseconds. However,

SMO algorithms need a multiple of the time taken by Naive

Bayes or J48, and so the latter algorithms are faster than this

average.
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Figure 5. Left: prediction errors for final rejuvenation cycles (SMO, � = 10); right: MSE averages for different classifiers and lags (lag in 30s units)

We tested each of the four algorithms described in Section

III-B with the combinations of following parameters expressed

in the number of samples (i.e. 30 seconds units): lag � = 0,
5, 10, 25, 50, 100; maximum training interval length T =
3000, 6000; model update interval length R = 1000, 3000. No

predictions have been made before sample number 622 (i.e. S
defined in Section III-C equals 622) to ensure that at least one

whole rejuvenation cycle is used for classifier training before

the first prediction. We have used 20 discretization levels over

the interval [0, 60] as the classifier output labels, i.e. label 1
corresponds to performance between 0 and 3, and label 20 to

performance in [57, 60].

Figure 4 (right) shows the absolute prediction errors (true

label index minus predicted label index) for the SMO classifier

(� = 10, T = 6000, R = 1000) over the whole prediction

range. The shown algorithm produces larger errors at the

ends of the rejuvenation cycles since the original data is less

deterministic here. Figure 5 (left) shows the final part of the

above prediction run (together with the performance data).

We obtain a similar figure for initial rejuvenation cycles. This

confirms that the prediction accuracy is high already for small

training sets.

D. Comparing prediction algorithms and their settings

To evaluate prediction errors for a whole series we also

used the Mean Squared Error (MSE) [18] measure applied

to differences between the predicted and correct (discretized)

performance values. In Figure 5 (right) we show the MSE

averages for different lag values (0, 5, 10, 25, 50 and 100
samples) and all four classification methods. Each bar rep-

resents an average of MSE values over four prediction runs

corresponding to all combinations of R = 1000, 3000 and

T = 3000, 6000. As the variance of the correct discretized per-

formance values ranged between 31.95 and 32.33 (depending

on the lag), most cases yield non-trivial predictions (a random

guessing approach would have given an MSE value around

32).

Figure 5 (right) shows also that - as expected - the primitive

ZeroR predictor has much smaller predictive power, and

performs badly for all lag values. Interestingly, for � = 0 (i.e.

“predictions” for the current moment) none of the classifiers

is sophisticated enough to perform error-free as it would



be possible. As the input values are not discretized, the

MSEs for this case represent possibly an incorrectly “learned”

discretization procedure.

As expected, the algorithms perform better for shorter

update intervals R = 1000 (more frequent adaptation) and

shorter maximum training interval T = 6000 (adaptation

to more recent data). However, the differences are less pro-

nounced than for different lags.

V. RELATED WORK

The primary method to fight aging is software rejuvenation,

i.e. a restart of the aging application periodically or adaptively.

The latter approach takes into account the progress of aging

and the effects of transient errors in order to find rejuvenation

schedules which maximize the overall application availability

and performance [6]. It has obvious advantages over the

periodical rejuvenation schema yet it requires models of aging

/ performance of the investigated application.

There are two basic approaches to apply proactive software

rejuvenation: (i) Analytic-based approach; (ii) Measurement-

based approach. The first approach uses analytic modeling of a

system, assuming some distributions for failure, workload and

repair-time. A survey about papers that follow this approach

can be found in [17].

The measurement-based approach is simpler yet usually

more accurate. Here the goal is to collect some data from

the system and then quantify and validate the effect of aging

in system resources [7], [6], [12]. Our previous work [3] falls

into this category. Here we used a spline-based description of

the aging profiles and a statistical test to verify its correctness.

In [2] we extended this method to the scenario of replicating

the aging application.

The above approaches have some drawbacks: they require

an initial data collection over many rejuvenation cycles to

establish a prediction model, they are not robust against

transient failures which invalidate the aging model established

under error-free conditions, and the computation of the aging

model might be expensive, especially in the case of ARMA-

based [12] models. The classification-based aging process

prediction partially eliminates these disadvantages.

VI. CONCLUSIONS

In this paper we have described two techniques related to

modeling of aging processes. The first one uses measuring

of server performance by artificial probes with high request

rates to obtain an aging model. The evaluation via simulation

based on real aging traces and realistic request distributions

confirmed that it is possible to create accurate aging models

in a production setting with negligible overhead.

In the second part we studied usage of classification algo-

rithms for predicting software aging processes in presence of

partial non-determinism and transient failures. The algorithms

yielded statistically significant predictions and achieved good

accuracy even with small training sets, which allows for high

adaptability. Furthermore, the amortized computational cost of

a prediction turned out to be low and so predictions can be

performed even with sub-second periodicity. The study also

has shown that the major families of classifiers - decision trees

(J48), Bayesian methods (NaiveBayes) and Support Vector

Machines (SMO) perform comparably well.
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