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Abstract—Popular web services and applications such as
Google Apps, DropBox, and Go.Pc introduce a wasteful imbal-
ance of processing resources. Each host operated by a provider
serves hundreds to thousands of users, treating their PCs as thin
clients. Tapping the processing, storage and networking capacities
of these non-dedicated resources promises to reduce the size of
required hardware basis significantly. Consequently, it presents
a noteworthy opportunity for service providers and operators of
cloud computing infrastructures.

We investigate how a mixture of dedicated (and so highly
available) hosts and non-dedicated (and so highly volatile) hosts
can be used to provision a processing tier of a large-scale
web service. We discuss an operational model which guarantees
long-term availability despite of host churn, and study multiple
aspects necessary to implement it. These include: ranking of
non-dedicated hosts according to their long-term availability
behavior, short-term availability modeling of these hosts, and
simulation of migration and group availability levels using real-
world availability data from 10,000 non-dedicated hosts. We also
study the tradeoff between a larger share of dedicated hosts
vs. higher migration rate in terms of costs and SLA objectives.
This yields an optimization approach where a service provider
can find a suitable balance between costs and service quality.
The experimental results show that it is possible to achieve a
wide spectrum of such modes, ranging from 3.6 USD/hour to
5 USD/hour for a group of at least 50 hosts available with
probability greater than 0.90.

I. INTRODUCTION

Web applications and services such as Google Apps, Drop-
Box, Go.Pc, and others are increasingly popular and require
from their providers enormous computing resources. For ex-
ample, the number of unique visitors to Google Docs and
Spreadsheets has surpassed 1.4 million in October 2007 [1].
Simultaneously, the used client-server architecture introduces
an imbalance: a host managed by a service provider serves
hundreds to thousands of user PCs. Even worse, the latter are
treated as thin clients even if their processing capacity might
be similar to those of the servers. Tapping the processing,
storage and networking capacities of these non-dedicated
resources for provisioning of web services and applications -
already successful in the case of Skype, SETI@home and file
sharing networks - promises to reduce the amount of required
hardware basis by a two-digit factor [2]. Consequently, this
approach presents a significant cost slashing opportunity (on
the order of millions of USD) for service providers and
operators of cloud computing infrastructures.

In this paper we investigate how a mixture of dedicated
(and so highly available) hosts and non-dedicated (and so

highly volatile) hosts can be used to provision a processing
tier of a web service. The non-dedicated hosts are assumed
to be either privately-owned (by volunteers) or institutionally-
owned commodity PCs with broadband Internet access. The
restrictions on web services suitable for this scenario stem
from the following factors:
• A non-dedicated host can go off-line (or become unavail-

able) at any time, without prior warning. An service must
provide a sufficient level of redundancy and implement
management mechanisms to mask such an outage.

• The transfer of data between non-dedicated hosts and
other tiers (data center and Internet users) costs money.
Furthermore, the bandwidth is usually limited (especially
from the non-dedicated resources to other tiers). In effect,
only moderate traffic rate can be supported by such hosts.

Despite these constraints there are a variety of suitable use
cases:
• Bursting into the cloud, i.e. using (possibly internal)

cloud computing resources to handle load spikes [3]. For
example, Mars Inc. used Amazon’s EC2 to handle bursty
traffic load during weekly candy giveaways.

• Certain Map-Reduce jobs, where the ratio of transferred
data to computation on a map / reduce node is high, e.g.
conversion of New York Times articles to pdf [4].

• Personal storage applications (DropBox, Wuala). Here
processing and data storage can be performed on non-
dedicated resources close to users, and backend file
servers can be used in the worst case.

• Massively Multi-player Online Games where hosts coor-
dinate players and check user scores by replaying [5].

• Certain interactive applications like a personal mobile
desktop (Go.Pc) or Google Docs. Such hosts can serve as
a temporary backend assuming that sufficient redundancy
is provided to avoid data loss.

Non-dedicated resources pose several security and privacy
challenges which we silently delegate to research on vir-
tualization and encryption techniques. We also assume that
application-specific fault tolerance mechanisms (e.g. replica-
tion and map-reduce programming paradigm) shall transpar-
ently eliminate processing delays due to outages of non-
dedicated hosts. Even with these issues our approach presents a
noteworthy opportunity; the scale of some services (100 000’s
of dedicated hosts) make even moderate per-host savings very
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Figure 1: Illustration of the resource provisioning process across many prediction intervals

significant as a total. Furthermore, companies have already
started to use volunteer resources for cloud computing. The
World Community Grid of IBM regularly runs short-lived
batch jobs across volunteer resources.

In this paper we propose and evaluate a set of techniques
necessary to implement the above scenario. Specifically, the
contributions of this study are the following:
• We evaluate new and existing techniques for conducting

short-term availability prediction of non-dedicated hosts.
Our results show that for our data set (10,000 non-
dedicated hosts participating in the SETI@home project)
the most practical solution is a combination of a very
simple prediction approach combined with ranking of
hosts according to their long-term availability behavior.

• We derive an operational model that allows one to iden-
tify Pareto-optimal combinations of dedicated and shared
hosts that optimize monetary costs or migration costs or
both. This operational model is based on the prediction
and ranking approaches.

• Based on this model we study the trade-offs between
a larger share of dedicated hosts vs. higher migration
rate for a real-world data set to estimate the feasibility
of the approach. Exemplary results show that for 50
hosts requested by a service provider, an allocation of
25 dedicated hosts out of 55 given will minimize total
costs (disregarding the migration rate) at 3.60 USD / hour.
An allocation 44 dedicated hosts out of 52 given will
minimize the migration rate.

Paper structure. In Section II we describe the overall as-
sumptions and the operational model. Section III studies and
evaluates prediction approaches. Section IV is devoted to
the simulation of the operational model. Section V discusses
related work. We conclude with Section VI.

II. OPERATIONAL ASSUMPTIONS AND RESOURCE
PROVISIONING MODEL

Most web services discern between processing hosts -
machines used for computation, not storing any permanent
data - and data storage hosts which carry persistent data in
form of DB’s and file systems. For example, in a typical 3-
tier web application, web and application servers are deployed
on processing hosts while the DBMSs and file servers use

separate data storage hosts. Usually all data storage hosts
require dedicated, high-available servers. In contrast, in many
scenarios processing hosts can be dedicated or non-dedicated.
In this work we focus on ensuring availability in mixtures
of dedicated and non-dedicated resources used as processing
hosts in a large web service. In principle, it would be possible
to use only non-dedicated hosts. However, a small “core” set
of dedicated resources reduces significantly the probability of
a complete service breakdown. Moreover, the bandwidth of
volunteers (in particular, the upload bandwidth) is too low to
move all services to the volunteers themselves.

A. Resource provisioning process
The primary problem in our scenario are availability out-

ages of non-dedicated resources: such processing hosts can
become non-available and later available without any control
of the service provider. Consequently, the traditional notion of
(individual) availability needs to be a relaxed and subsumed by
collective availability introduced in [6]. The latter is achieved
if in a pool of N hosts at least n remain available over a
specified period of time. If a service provider (i.e. resource
receiver) requests from a cloud computing operator (termed
resource operator) a set of n hosts, the resource operator will
assign to him a working set of N ≥ n hosts with a necessary
level of redundancy R = (N − n)/n ≥ 1. The working set
hosts is composed of d dedicated hosts (selected as stated in
Section III) and N − d non-dedicated hosts.

To ensure an operation over a long time period the se-
lection of the working set needs to be repeated periodically
as illustrated in Figure 1. The time interval for which a
working set is selected and operated is called the prediction
interval. Its length (in hours) is designated as pil. At the
end of each prediction interval hosts which dropped out need
to be replaced by other (non-dedicated) hosts (selected as
shown in Section III). These new hosts need to be initialized
with working data which creates some migration costs. The
selection and assignment of working sets is assumed to be
done by central instance, but there are no inherent constraints
to use a P2P or hierarchical architecture.

B. Operational and SLA parameters
In this section we outline how the parameters N , d are

set (determining the size of the working set and number of
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Figure 2: Interaction between resource operator and service provider (SP) on operational and SLA parameters

dedicated resources in it, respectively). We also introduce
several service quality metrics / specifications and discuss their
interplay with N and d. Table I overviews the introduced
symbols.

Figure 2 illustrates the steps required to set the values of
N and d for a resource request. In a preparatory phase we
monitor availability of non-dedicated hosts over a period of
several weeks. The recorded data is used to assign each host a
regularity rank i defined in Section III-B. A lower i indicates
that predictions are likely to be more accurate. We designate
by r(i) a group of non-dedicated hosts whose rank is i.

An initial provisioning request of a service provider must
specify the number n of desired hosts and an availability
guarantee ag, see Figure 2. The latter is defined as the
probability that at least n of the hosts in the (possibly larger)
working set remain available over time pil (i.e. this is a
probability that the collective availability is achieved in a
single prediction interval). For given r, n and ag we compute a
representative set Z of Pareto-optimal combinations of N and
d (see Section IV-D). Each pair (N, d) fulfills the availability
guarantee ag and is Pareto-optimal in the sense that neither N
nor d can be decreased (leaving the other parameter constant)
without violating ag. We assume that hosts of lowest rank are
used first, and only if these are exploited the next rank group
is used. We evaluate here all ranks to compare them in terms
of service quality and costs.

For each Pareto-optimal pair (N, d) a larger d implies higher
costs due to dedicated servers. On the other hand, larger d
reduces the migration rate mr defined as the average number
of failed (non-dedicated) hosts divided by N . The induced
trade-off between higher costs vs. higher migration rate is
slightly more complicated as we also need to consider that
each replacement of a failed host (see Figure 1) incurs costs
due to transfer of working data (i.e. migration costs). In
Section IV-D we explain how the total cost tc (sum of the
cost of the dedicated hosts and the migration costs) as well
as the migration rate mr is computed for each optimal pair
(N, d) under a given rank.

In the final stage, we sort the pairs (N, d) according to
the (increasing) total cost and according to the (increasing)
migration rate. If a service provider has an upper bound on the
total costs, he chooses a pair (N∗, d∗) with a total cost below
just this threshold which minimizes the migration rate. An
analogous approach is used if an upper bound on the migration

rate is specified. The selected combination (N∗, d∗) is then
used in the resource provisioning process described in Section
II-A.

III. IDENTIFYING HOSTS WITH HIGH SHORT-TERM
AVAILABILITY

Correct selection of non-dedicated hosts is the most es-
sential step for providing high collective availability in each
prediction interval (see Figure 1). In this section we propose
several methods to achieve this task and evaluate them.

A. Prediction scenario and approaches

For each non-dedicated host we forecast its availability over
the next prediction interval (see Figure 1). In other words,
if t is the end of the last prediction interval, we want to
predict whether or not a host will be available in the complete
interval [t, t + pil] where pil is a multiple of an hour. The
availability data per host is a string of bits, each representing
non-availability (0) or availability (1) in a particular hour. The
methods introduced in Sections III-A2 and III-A3 require a
prediction model which is obtained by processing historical
availability data in a training interval of specified length.

The prediction results are evaluated on a test interval, a
data segment following directly a training interval. To estimate
the accuracy we use a prediction error defined as a ratio of
mispredictions to all predictions made on the test interval (in
case of our 0/1 data this corresponds to the popular Mean
Squared Error, MSE). As availability patterns of hosts are
likely to change over time, we recompute the prediction model
after the end of each test interval. The complete prediction
error of model-based predictors is computed over a succession
of consecutive test intervals, with an updated model for each

Symbol Definition
pil prediction interval length
n desired number of hosts
N number of hosts given (working set)
d number of dedicated hosts
ag availability guarantee
mr migration rate
tc total costs
r(i) group of non-dedicated hosts with rank i
Z Pareto-optimal combinations of N and d

Table I: Symbol definitions



one. We have implemented and evaluated three prediction
approaches described in the following.

1) Last value predictor: The last value predictor (abbre-
viated LastVal) is a simplistic predictor which uses the
availability value in the last hourly interval before prediction
(i.e. [t − 1, t], where t is in hours) as the prediction of
availability for the interval [t, t+pil]. The advantages here are
minimum computational cost and no need for model training
(there is no model).

2) Classification-based predictors: Classifiers are well-
studied algorithms which create a function with a relation
between its inputs and a discrete output similar to the one
observed on the training data. A classifier is usually the most
suitable predictor type if inputs and outputs are discrete [7]
as in this case. We have tested several classifiers, including
Naïve Bayes (abbreviated NB) [8], Support Vector Machine
SMO (SMO) [9], K∗- an instance based classifier (K∗) [10],
multinomial logistic regression model with a ridge estimator
(Logistic) [11]. We have also initially used a C4.5 decision
tree [12] but dropped it due to consistently bad accuracy in
our case.

The primary input to build a classification model is the
availability value in the last hourly interval before prediction.
Since this input does not exploit the power of classifiers to
capture complex relationships, we have included additional
information (features) per training and per test instance. These
features were:

• time: time and calendar information of the last hourly
interval before prediction at time t

• averages: averages of the host availability over the last
2, 4, 8, 16, . . ., 128 hours prior to the prediction time t

• switch ages: number of hours since last change of avail-
ability until the prediction time t.

3) Gaussian models of availability runs: This algorithm
(abbreviated Gauss) models the lengths of both availability
and non-availability runs (i.e. uninterrupted sequences of
hourly availability or non-availability). To train a model we
compute the average and standard deviation of the length of
all availability runs in the training interval data (same for non-
availability runs) which allows us for modeling of run lengths
by the Normal (Gaussian) distribution. To predict, we first
compute the number k of hours since last switch. If the last
observed state is availability, we compute the probability p that
the end of prediction interval (i.e. k+pil) is still in the current
availability run. If the last observed state is non-availability, we
use the other Gaussian model to find out the probability p′ that
k+1 is in the current non-availability run (see Section III-A).
A host is predicted as available (non-available) iff p ≥ 0.5 (iff
p′ ≤ 0.5).

Finally, if the standard deviation of a run length is above
a specified threshold (separately for availability and non-
availability runs), we revert to the method from Section III-A1.
This ensures that even if the run lengths are non-stationary
predictions of a reasonable quality can be achieved.
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Figure 3: Average error of the prediction methods for pil = 1

B. Ranking of hosts

Evaluation from Section III-D suggests that the accuracy
of short-term predictions varies widely among non-dedicated
hosts. To segregate these hosts we assign each of them a
regularity rank i computed as follows. We first determine
a host’s error score according to one of the two methods
below. Then the hosts are sorted by decreasing error scores,
and finally subdivided into groups r(1), . . . , r(4) of equal
sizes corresponding to regularity rank values 1, . . . , 4. The
computation of the error score is done as follows.

a) MSE: Here we use the computationally cheap take-
last predictor (Section III-A1) to perform predictions on the
first part D of historical data (not used later). The MSE
obtained in this way is used as the error score.

b) Average number of availability switches: We exploit
the result of [6] and use a metric called aveSwitches as the
error score. It is defined as the number of changes between
availability and non-availability (or vice versa) per week.

C. Measurement method

Data used throughout the paper has been gathered using
the Berkeley Open Infrastructure for Network Computing
(BOINC) [13] from hosts participating in SETI@home project.
The BOINC client has been instrumented to record the start
and stop times of CPU availability (independently of which
application the BOINC local client scheduler chooses to run).
It is important to note that these times of CPU availability
are a subset of the times when a host was powered on, as the
client would start or stop an interval depending on whether the
machine was idle (the latter defined by the preferences of the
BOINC client set by the user). On the other hand, availability
does not imply that a host had an Internet connectivity at this
time.

For our studies we use the subset of 10,000 hosts chosen
randomly from about 48,000 hosts that were actively running
the client between December 1, 2007 and end of February
12, 2008. We assume that the CPU is either 100% available
or 0% which is a good approximation of availability on real
platforms.



D. Experimental evaluation

Throughout this section we use the following settings and
abbreviations. For model-based predictors, the first training
interval had a length of 15 days (i.e. 15 ∗ 24 samples), and
each subsequent one 30 days. We have updated the prediction
model every 20 days. For explanation of the predictor types
(LastVal, NB, SMO, K∗, Logistic, Gauss) see Section
III-A. For the predictor Gauss we found that the threshold to
revert to the LastVal method of 4 works best.

First, we evaluate accuracy of the introduced prediction
techniques. Figure 3 illustrates for pil = 1 the MSE of
each prediction algorithms averaged over 500 hosts selected
randomly from our data set. The boxplot shows the lower
quartile, median, and upper quartile values in the box; whiskers
extend 1.5 times the interquartile range from the ends of
the box while “crosses” outside them are considered outliers.
As expected, we have a significantly larger error for longer
prediction intervals (higher pil values). More surprisingly is
that for pil = 1 simple predictors like LastVal and NB
perform best. For pil = 4 the situation is very similar (figure
omitted) but the best performing predictors are Gauss and
again NB, with a smaller error variance of the latter.

Subsequently, we study how additional features influence
accuracy of classifier-based predictors. Figure 4 shows aver-
ages of MSEs (over 500 hosts as above, pil = 4) for such
predictors and various features added one at a time to the
base classifier input (see Section III-A2 for explanation of
abbreviations). Except for SMO and time-based features, all
errors are larger. Similarly, this holds for the case when pil = 1
(not shown).

Our results show that sophisticated predictors do not have
any consistent advantage over the extremely simplistic ap-
proach such as LastVal. This might be caused by the fact
that only feature-scarce data is available for model training
(essentially this data is just a bit string representing past avail-
ability), or that the host behavior is (on average) inherently
non-predictable.

On the other hand, ranking of hosts (Section III-B) has
influence on the quality of predictions, as shown by exper-
iments of Section IV. This indicates that hosts are stationary
over time in having long or short uninterrupted sequences
(runs) of availability. For hosts with long availability runs,
the LastVal predictor works sufficiently well. Consequently,
this prediction approach paired with host ranking is used in
the following sections.

IV. FINDING OPERATIONAL PARAMETERS VIA
SIMULATION

A. Method

Table I overviews the symbols used in this section. We
execute trace-driven simulations to determine the optimal costs
and migration rates for each rank group. The simulated service
runs continuously over the entire trace period (excluding the
training data D). We vary the starting point of each simulated
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Figure 4: Influence of the additional features for classifier-
based prediction and pil = 4

service. So for a given pil of 1 or 4 hours, each simulation
executes over 4000 and 2400 predictions respectively, ensuring
statistical confidence in our results.

The parameters for simulations are as follows. Hosts are
ranked using the criteria of either average number of switches
or MSE. We then simulate a minimum of 50 or 100 requested
hosts (n). For each n, we vary the number of given hosts N
(number of dedicated hosts plus the number of non-dedicated
hosts) such that the redundancy varies from 1 (none) to 1.6.
For each N , we vary the number of dedicated hosts allocated
from 0 to n. We do this for pil’s of either 1 or 4 hours.

B. Performance metrics

We measure the performance results of each simulation with
several metrics derived from the operational model (Section
II). A particular business policy can weight each of these
metrics accordingly. The first metric is the fraction of pil’s
where the service provider was provided with at least n of the
requested hosts. This reflects the collective availability level
obtainable for each combination of dedicated and given hosts.
The second metric is the total cost of achieving this service
level. The total cost can be broken down into migration costs
(to restart the service on a non-dedicated hosts at the start
of a prediction interval), work costs (to transfer data to non-
dedicated hosts), and dedicated host costs. The third metric is
the migration rate needed to achieve the service level.

To compute the monetary costs, we assume that the cost of
the dedicated host is 10 US cents per hour, which is equivalent
to the hourly rate for a small instance on Amazon’s EC2.
Amazon hosts one of the largest clouds and thus would be
a candidate for our proposed hybrid approach. We assume
that the cost to transfer data to non-dedicated hosts is 10 US
cents per gigabyte. This is the cost charged by Amazon in the
lowest tier for outgoing data transfers. Lastly, we assume that
the amount of data transferred during migration from one non-
dedicated host to another is 10MB per hour. This is reasonable
amount for relatively stateless application and web servers.
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Figure 5: Performance and cost of MSE (n = 50, pil = 4, rank 1)
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Figure 6: Performance and cost of MSE (n = 50, pil = 4, rank 4)

C. Results

In the interest of space, we show only those results for rank
1 and 4. We find that that the availability guaranteed with
MSE-based ranking is better than aveSwitches-based ranking
by as much as 5% (see Section III-B for definitions). So we
focus on the MSE-based results.

In Figure 5, we show the availability guarantee, migration
rate, and total cost for hosts in rank 1. Given a particular
number of hosts N , we observe expectedly that the fraction
of availability guarantees met decreases as the number of
dedicated hosts decreases. When the number of given hosts
N is equal to the minimum requested n, the fraction of
availability guarantees met increases exponentially with an
increase in the number of dedicated hosts. As the given number
of hosts increases relative to the minimum requested, this rate
of growth lessens to a linear rate with slope that approaches
0. The implication of this trend is that redundancy of even
just a few percent can reduce greatly the fraction of dedicated
hosts needed to achieve an availability guarantee. For example,
increasing redundancy by 10% can improve the fraction of
guarantees met by as much as 40%.

In Figure 6, we show the availability guarantee, migration
rate, and total cost for hosts in rank 4. Clearly, the fraction
of availability guarantees met is significantly lower (by as
much as 40%) than the fraction met for hosts in rank 1.
The dependency on the fraction of availability guarantees met
and redundancy is much stronger than for hosts of rank 1

due to high host unpredictability; the relationship is either
exponential or linear with slope of 1. The implication is that
we need as many as 3 times the number of non-dedicated
hosts of rank 4 compared to the number of rank 1 in order to
achieve the same rate of meeting the availability guarantee.

We also determined the performance and cost trends when
the minimum number of hosts requested is doubled to 100.
From the simulations, we found that the migration rate for
hosts of rank 1 only increases by a few percent to about 13%
in comparison to the minimum requested of 50. Still, the total
costs to receive a minimum of 100 hosts is roughly double
that for 50 hosts; the cost of dedicated hosts is dominant.

D. Optimizing costs

We describe how the previous results can be used to
determine cost optimal combinations of dedicated and given
hosts. The plot shown in Figure 5 can be intersected with a
horizontal plane (parallel to x-y) whose z-value is the avail-
ability guarantee ag. We then find curve Z with combinations
of the number of dedicated hosts d and N . Then for each point
in Z we have a total cost and the migration rate.

We can then find two optimal points depending on: 1)
popt_cost: minimal cost without considering migration rate 2)
popt_mig: minimal migration rate. Applying the curve Z, a user
can then decide on the optimal cost/migration combination.

In Figure 7, we show the curve Z where the minimum
availability guarantee is 0.90 with 50 hosts requested. Each
line in this figure represents availability within some range
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Figure 7: Pareto optimal for availability ≥ 0.90 of MSE (n = 50, pil = 4, rank 1)
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Figure 8: Pareto optimal for availability ≥ 0.90 of MSE (n = 50, pil = 4, rank 4)

in particular [0.90,0.93), [0.93, 0.96), and [0.96, 1.00]. As
expected, for a given number of hosts, availability increases
with the fraction of dedicated hosts. Also, for a particular
number of dedicated hosts, availability increases with an
increase in number of given hosts, i.e., undedicated hosts. The
reason that the lines in Figure 7 are not of equal length is
because the availability level provided by a set of hosts tends
to jump by increments of 0.03 or higher as the number of
hosts in the working set is changed.

Also in Figure 7, we show the line plots of the migration
rate for each point of Z. We detail popt_cost and popt_mig

for rank groups 1 and 4. For rank 1, the point that minimizes
costs without considering migration rate is 25 dedicated hosts
out of 55 given. The point that minimizes the migration rate is
44 dedicated hosts out of 52 given. For rank 4, the point that
minimizes costs is 25 dedicated hosts out of 62 given hosts.
The point that minimizes the migration rate is 49 dedicated
hosts of 52 given hosts. These points can be used to guide a
service provider toward the best operational configurations.

V. RELATED WORK

In cloud computing, the idea most related to our work
is known as cloudbursting - dynamic deployment of a soft-
ware application that runs on internal organizational compute
resources to a public cloud to address a spike in demand
[3]. Our work differs by considering non-dedicated, volatile

resources, and by an extensive study of availability issues,
usually ignored in cloudbursting.

The notion of collective availability for non-dedicated hosts
only has been introduced in [6]. We exploit here this notion
to develop a performance and monetary cost model for a
hybrid system consisting of both dedicated and non-dedicated
resources. The significant differences in this work to the model
in [6] are that we consider also dedicated resources, use host
ranking to achieve a service level, and deploy a cost model.

There are several approaches for short-time predictions of
host availability:

1) Statistical characterization of average availability, pos-
sibly with incorporation of calendar effects [14], [15],
[16], [17]. Here statistics computed once are used for
predictions.

2) Prediction of short-term availability using machine
learning algorithms trained on historical availability
[18], [19], [20], [21], [6].

3) Clustering hosts according to their historical prediction
accuracy, and using a simplistic model which projects
the current availability state into short-term future. This
approach is exploited in this paper in Section IV.

The drawback of the first approach is that statistics such
as average availability are too course for dynamic hosts.
These statistics often do not capture the temporal structure
of availability, and are often misleading in some cases due to



the following effects:
• Hosts with relatively low average availability are possibly

available for long time periods (e.g. weekends) - these
would be ranked low but are still usable.

• High availability does not help much if a host is switched
on/off frequently and irregularly.

The second approach partially resolves these deficiencies and
has been used successfully in context of distributed systems,
such as desktop Grids. In this work we compare in Section
III classifier-based approaches and a domain-specific predictor
(Section III-A3) against the third approach above. It turns
out that - at least for the SETI@home data set - both the
classifiers and domain-specific predictors are an “overkill” as
their accuracy is not higher.

VI. CONCLUSIONS

In this paper we showed how to make short-term availability
predictions, and how long-term availability behavior of hosts
could be leveraged to divide hosts into rank groups. We then
applied these ranks groups in a performance and monetary cost
model for meeting SLA’s in terms of availability guarantees.
Specifically, our findings were as follows:
• Prediction: predicting future availability using the last

value work surprisingly well, especially combined with
host ranking. By contrast, a domain-specific predictor
based on a Normal model (Gauss) as well as classifier-
based predictors under perform prediction using the most
recent value. We also found that using MSE is the most
effective way to divide hosts into rank groups (compared
to average number of switches).

• Operational model: we identify combinations of dedi-
cated and shared hosts that optimize monetary costs or
migration costs or both. This operational model is based
on predictions, and ranking the hosts by their historical
long-term availability patterns. For example, for 50 hosts
requested from the rank group 1, an allocation of 25
dedicated hosts out of 55 given will minimize total costs
(disregarding the migration rate) at 3.60USD / hour.
An allocation 44 dedicated hosts out of 52 given will
minimize the migration rate.

Our future work will refine this approach along several dimen-
sions. One of them is considering the capacity of individual
hosts and not only host count as the measure of allocated
resources. We will also study the impact of additional com-
munication latency of volunteered resources. Another research
target is the influence of migration on the application per-
formance, and how to resolve it with asynchronous or live
migration. A more advanced extension is to consider the
geographic location of a host, which would require a new
measurement method. We will also perform our study on a
much larger data set collected over the recent two years and
comprising more than 100k hosts.

There remain several open questions related to cloud com-
puting. Given appropriate data sets, our concept could be
applied to a combination of machines from a private and public

clouds, and also to a mixture of commodity and highly reliable
resources deployed in a single data center. We also do not
deal in this work with any security / privacy issues, incentive
schemes for volunteers, and consider only a single business
aspect of cloud computing, i.e resource savings.
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