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1.1 Introduction

An inherent drawback of non-dedicated computing resources is low and un-
controllable availability of individual hosts. This phenomenon limits severely
the range of scenarios in which such resources can be used and adds a sig-
ni�cant deployment overhead. Approaches to compensate for these di�cul-
ties use redundancy-based fault-tolerance techniques supported by modeling
and prediction of availability. In the �rst part of this chapter we discuss a
variety of modeling techniques ranging from probability distributions to ma-
chine learning-based prediction techniques. Subsequently we focus on methods
to provide resource-e�cient and cost-minimizing fault-tolerance. Here redun-
dancy is mandatory to mask the outages of individual machines, yet on the
other hand it might increase overhead and resource cost. We describe how
availability models help here to obtain statistical guarantees of (collective)
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Number of hosts n
2 3 4 5 6 8 10 16 32

pi ≥
0.1 0.19 0.27 0.34 0.41 0.47 0.57 0.65 0.81 0.97
0.2 0.36 0.49 0.59 0.67 0.74 0.83 0.89 0.97 1.00
0.4 0.64 0.78 0.87 0.92 0.95 0.98 0.99 1.00 1.00

Table 1.1: Lower bounds on probability of a failure of at least one host in a
group of n hosts (with individual failure probabilities of p1, . . . , pn)

availability and how total costs of the resources can be balanced against relia-
bility properties. We also consider the issue of adjusting application architec-
tures in order to tolerate partial resource failures. This promises to broaden
the type of applications deployed on voluntarily computing resources from
embarrassingly parallel jobs to Map-Reduce-type applications or even web
services.

1.1.1 Problem of individual failures

Outages of individual resources occur in all types of distributed systems.
In dedicated environments, such an outage is usually caused by a hardware or
software failure. To simplify our considerations, we will use the term failure
when referring to outage due to such a malfunction or because the resource
owner has interrupted a �non-dedicated� execution (e.g. by shutting down
his computer). The essential di�erence between dedicated and non-dedicated
scenarios is that in the latter case the probability of a failure (within a time
unit) is typically much higher than of dedicated hosts.

Consider a collection of n hosts where each can fail (independently of
others) with a probability pi within a time interval T . Then the probability
that at least one host fails within T is

1−
n∏

i=1

(1− pi). (1.1)

Assuming pi ≥ 0.2 for T of e.g. two hours (a realistic assumption e.g. in case
of SETI@home hosts [1]) Table 1.1 shows that already for 4 hosts a chance
that at least one host fails within T surpasses 50% (it is at least 0.59). This
high failure probability has severe consequences on the type of applications
which can be executed on non-dedicated hosts. Most importantly, it shows
that without additional measures (such as redundancy and checkpointing) it is
virtually impossible in such environments to execute any parallel applications,
i.e. applications which assume synchronized availability of several (distributed)
resources.

Consequently, current applications running on non-dedicated resources
are predominantly embarrassingly-parallel computations where each host pro-
cesses a chunk of data (or a parameter con�guration) independently and does
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not communicate with other workers. But even in the latter scenario a failure
might have several negative e�ects, including:

• lost of data - this is a major problem in systems such as Wuala which
use non-dedicated (along with dedicated) resources for data storage

• lost computation - in case of computational jobs this includes lost of
work since last checkpoint; also there is the case where all work since
last upload of the results is lost (if hosts drops out permanently)

• delayed job completion - as the work performed by a host in a time unit
is a product of its computing capacity and its average availability, each
failure implies less work in a time unit and so a possible delay of the
completion

• degradation of overall service availability - if hosts are used in a �service�
scenario (as in the case of Wuala), individual outages can lead to an
overall failure of a (replicated) service

• need for replacement / migration actions - temporarily or permanently
failed hosts trigger need for data migration and replication actions, as
well as afresh scheduling actions.

Obviously, even non-parallel computations require a high degree of redun-
dancy, checkpointing and other mechanisms if hosted on non-dedicated re-
sources. This signi�cantly increases the overhead and reduces by a consid-
erable factor the overall deployment e�ciency along with the computational
capacity of such infrastructures.

As mentioned above, cases where unexpected failures of individual re-
sources are common and need to be treated are not limited to non-dedicated
resources. An example are low-cost computational nodes deployed in large-
scale data centers as in case of Google infrastructures. In Equation (1.1) large
n implies that the probability of at least one failure becomes high even if prob-
ability of a single node failure is low. Another example are recently introduced
Spot Instances in the Amazon Elastic Compute Cloud (EC2) [2]. These in-
stances (typically spare capacity of EC2) can be revoked abruptly due to price
and demand �uctuations. While o�ering lower resource costs their availability
behavior introduces the same problems as in case of non-dedicated hosts.

We see that guaranteeing stable and e�cient operation of a system com-
posed of either unreliable or many resources is a problem transcending the
domain of voluntarily computing. The concepts and methods presented in
this chapter attempt to be su�ciently generic to cover this extended set of
scenarios.
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1.1.2 Chapter contents

The focus of this chapter is modeling of availability of individual resources
and their collections. For availability optimization we turn our attention solely
to collections of resources. There are several reasons for this:

• While it is possible and bene�cial to model availability of individual re-
sources (see Section 1.2.2) we have little power (except for host �ltering)
to enforce the availability of speci�c hosts.

• Tightly-coupled distributed, parallel algorithms and many services can
be only provisioned by resource collections.

• Moreover, even in case of embarrassingly parallel computations we need
to provide redundancy and understand its amount for reasons of e�-
ciency. Here again it is necessary to consider availability optimization in
collections of resources.

In Section 1.2 we present methods for modeling availability of non-dedicated
resources on short-term and long-term time scales. Section 1.3 considers ap-
proaches for enhancing availability of resource collections. Several aspects are
considered: trade-o�s between redundancy and availability guarantees and
monetary costs of such guarantees if non-dedicated resources are �enriched�
by dedicated (cloud computing-type) resources. Section 1.4 illustrates these
methods on empirical studies performed on a large number of SETI@home
hosts. The �nal Section 1.5 contains the conclusions.

1.2 Modeling Availability of Non-Dedicated Resources

Modeling of host availability behavior serves two goals:

• Analyzing past availability behavior of individual hosts and their groups.
The results can be applied in a multitude of ways, including: estimation
of cumulative computational capacity; understanding availability and
failure rate distributions (or, equivalently knowing share of hosts with
average availability / failure rate in a given interval); discovering peri-
odic temporal patterns of availability and long-term trends; �ltering of
hosts by speci�c criteria like �stable behavior�; detection of large-scale
anomalies or failures such as partial network outages.

• Predicting short-term availability of individual hosts or their groups,
where short-term means one to several hours. This can be directly ap-
plied for availability enhancement discussed in Section 1.3. As detailed
below, predictive methods frequently use models of past behavior. Also
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Figure 1.1: CPU availability of SETI@home hosts

note that long-term availability prediction (beyond one day) is usually
not feasible except for a small class of hosts with very �regular� behavior.

Obviously considering more input data and using more sophisticated availabil-
ity models is likely to yield more precise results (under the assumption that
correct, i.e. non-over�tting [3] approaches are used). In general, we consider
the following classes of availability models with increasing level of sophistica-
tion:

• cumulative models such as distributions of average availability and time
between failures (Section 1.2.1)

• individual models which capture availability behavior of a single host
(Section 1.2.2)

• models which consider individual behavior as well as their dependencies
(e.g. short-term correlations between host behavior).

The last case still awaits an empirical study and is a challenge in terms of
computational complexity for the amount of hosts considered in Section 1.4.

1.2.1 Availability distributions

One of the fundamental forms of availability modeling is to consider the
fraction of time when each host is available (aveAva) and to compute the (cu-
mulative) distribution function of this metric. The distribution is essentially
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Figure 1.2: Average availability run per host in hours

computed by sorting the hosts according to this metric. Figure 1.1 (taken from
[4]) shows a plot of such a distribution for a subset of 112,268 hosts participat-
ing in the SETI@home project between April 1, 2007 and February 12, 2008
(see [4]); here CPU availability is understood as host availability. Obviously
40% of hosts are available at least 80% of the time while almost 70% of hosts
is available at least 40% of time.

Even if each host is characterized by only a single metric, their distribution
allows us to answer several important questions: What is the cumulative pro-
cessing capacity of the host population (if all could be used)? Are the many
hosts with high average availability? What is the median fraction of time a
randomly selected host is available? Answering these questions is helpful e.g.
for capacity planning and deciding on which hosts a job is most likely to �nish
on time.

A related metric is the average duration of host's availability (aka aver-
age availability run, aveAvaRun). Note that for a �xed value of aveAva the
metric aveAvaRun can range widely. If a host changes availability state very
frequently, aveAvaRun might be small (on the order of few minutes); if a host
behaves �stable�, the value of aveAvaRun can reach months. The knowledge
of this metric is particularly important to optimize the intervals between re-
sult checkpointing. It also helps to select the appropriate hosts for jobs where
a non-availability incurs a high cost (e.g. due to data migration overhead).
Figure 1.2 (from [4]) shows the cumulative distribution of this metric for the
same study as in Figure 1.1. It shows that the median time a host is available
is 8 hours, however there are at least 36% of hosts with average uninterrupted
availability of more than 20 hours.
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Characterizing hosts by such fundamental metrics is simple and bene�cial.
However, such metrics do not capture more complex temporal patterns (e.g.
weekly periodicity) and have limited value for short-term availability predic-
tions of speci�c hosts.

1.2.2 Individual availability models

This section discusses several methods for modeling and forecasting the
availability of individual hosts. After looking at methods for short-term pre-
diction (partially based on models) we turn our attention to characterization
of long-term availability behavior.

1.2.2.1 Short-term prediction

Short term availability prediction attempts to forecast availability of a
speci�c host in a time interval called prediction interval [t, t + pil]. Here t is
the prediction time (usually the �current time� in the deployment scenario)
and pil the prediction interval length. To simplify, we assume that pil is an
integer indicating hours and consider a host as available in [t, t + pil] i� it is
completely available (i.e. without interruptions) in this time interval. In the
following we describe several types of predictors for this scenario.

Last value predictor. The last value predictor (abbreviated LastVal)
is a simplistic predictor which uses the availability value in the last hourly
interval before prediction (i.e. [t− 1, t], where t is in hours) as the prediction
of availability for the interval [t, t+pil]. Its advantage is virtually non-existing
computational and memory cost due to lack of a past availability model.

Gaussian models of availability runs. This algorithm (abbreviated
Gauss) models the lengths of both availability and non-availability runs (i.e.
uninterrupted periods of availability or non-availability). To train a model we
compute the average and standard deviation of the length of all availability
runs in the training interval data (same for non-availability runs). Subse-
quently the run lengths are modeled by the Normal (Gaussian) distribution.
To predict, we �rst compute the expected remaining length of the current run.
This is given by the number k of hours since last availability change and ex-
pected (total) run length (derived from the distribution). If the last observed
state is availability, we compute the probability p that the end of prediction
interval (i.e. k+ pil) is still in the current availability run. If the last observed
state is non-availability, we use the Gaussian model for non-availability runs to
�nd out whether this run is likely to extend to the �rst hour of the prediction
interval (which gives �non-available� as the prediction value). Finally, if the
standard deviation of a run length is above a speci�ed threshold (separately
for availability and non-availability runs), we revert to the LastVal predictor.
This ensures that even if the run lengths are non-stationary predictions of a
reasonable quality can be achieved.

Classi�cation-based predictors. Classi�ers are well-studied algorithms



12 Desktop Grid Computing

with broad applicability in data mining. They are typically used when inputs
and outputs are discrete [5] as in our case. Formally, a classi�er is a function
f : V → W which assigns to a vector v ∈ V a label w ∈ W where W
is a discrete set [6]. The scalars in v correspond to attributes - essentially,
properties of an object which we would like to label. In the learning or training
phase a classi�cation algorithm is presented a set of examples (v, w) (attribute
vectors with correct labels) from which it attempts to build a classi�er f which
captures the relationship between attribute values and labels. Subsequently,
classi�cation is performed: a vector v with an unknown label is given, and the
most likely label f(v) is computed.

In our setting the label w is 1 or 0 depending whether a host is available
in the complete interval [t, t+ pil] or not. Attributes are (in the basic version)
past availability values of the considered host starting at times t − k (for
multiple k > 0). Thus, we combine in a training example (v, w) measurements
v of past availability with a label w indicating �current�/�future� availability.
This e�ectively turns classi�cation into (availability) prediction. The training
examples are obtained from a speci�c time interval called training interval ;
essentially, each hour of this interval gives rise to one training example.

Since the above-described �raw� attributes might not be a good data rep-
resentation to extract availability information from the past data we have in-
cluded additional functions of historical data (derived attributes or features)
to extend the attribute vector. These features are:

• Time: time and calendar information of the last hour prior to t

• SwitchAge: number of hours since last change of availability until t

• Averages: averages of the host availability over the last 2, 4, 8, 16, . . .,
128 hours before t.

We have studied several classi�ers, including Naïve Bayes (abbreviated NB) [7],
Support Vector Machine SMO (SMO) [8], K∗- an instance based classi�er (K∗)
[9], multinomial logistic regression model with a ridge estimator (Logistic)
[10]. Other methods such as a C4.5 decision tree [11] are also possible.

Estimating prediction accuracy. Independently of the method, the
prediction results are evaluated on a test interval, a data segment following
directly a training interval (the training data is ignored for LastVal). To
estimate the accuracy we use a prediction error de�ned as a ratio of mispre-
dictions to all predictions made on the test interval (in case of our 0/1 data
this corresponds to the popular Mean Squared Error, MSE ). As availability
patterns of hosts are likely to change over time, we segment data (for a speci�c
hosts) into a series of partially overlapping training intervals and create a new
model for each one. The complete prediction error of model-based predictors
is computed over a succession of the corresponding test intervals.



Modeling and Optimizing Availability of Non-Dedicated Resources 13

aveSwitches aveAva aveAvaRun aveNavaRun zipPred MSE

↓ ↑ ↑ ↓ ↓ ↓

Table 1.2: Long-term availability metrics and their sort order (↑ = ascending,
↓ = descending) for regularity rank computation

1.2.2.2 Long-term modeling and host ranking

As noted in Section 1.2, analyzing past availability behavior can be bene-
�cial in a multitude of ways. Our focus here is on exploiting the phenomenon
that long-term properties of availability of (individual) hosts can in�uence
short-term prediction accuracy. For example, if a host is switched on and o�
frequently and randomly, the individual prediction models will be signi�cantly
worse that for hosts which are rarely switched on / o� or these events follow
a regular pattern.

To this purpose we assign each host a regularity rank r = 1, . . . , k, where
1 corresponds to most �unpredictable� (�irregular�) hosts and k to most �pre-
dictable� (�regular�) ones. This rank is assigned according to one of several
long-term availability metrics M of hosts ([12, 13]) as follows. For a speci�c
M we compute its value for each host and sort them by these values (ascend-
ing or descending depending on M , see Table 1.2). Subsequently, hosts are
subdivided into k equally-sized groups r(1), . . . , r(k), each corresponding to a
single rank value.

This �rst metric called aveSwitches is de�ned as the number of changes
between availability and non-availability (or vice versa) per week. Metric
aveAva is the average host availability in the training data. The aveAvaRun
(aveNavaRun) is the average duration of uninterrupted availability (non-
availability). The metric zipPred is more involved and computationally costly.
The former is inspired by [14] and is essentially the reciprocal value of the
length of a �le with the training data compressed by the Lempel-Ziv-Welch
algorithm (raw, without the time and hist features). The rationale is that a
random bit string is hardly compressible while a bit string with a lot of reg-
ularities is. To compute the �nal metric - MSE - we train a cheap predictor
on a part P1 of the training data (P2 is not used later) and classify the re-
maining training data P2. The Mean Squared Error (Section 1.2.2.1) of the
classi�cation on P2 is used as the error score. The latter metric has turned to
be most useful for �nding the regularity ranks on SETI@home hosts and is
used in case studies of Section 1.4.



14 Desktop Grid Computing

n = # desired
hosts

N = # given
hosts

d = # dedicated
hosts in

iti
al

da
ta

m
ig

ra
tio

n

se
le

ct
io

n
of

no
n-

d.
 h

os
ts

working set
for interval i

host replacement and
data migration

...

selection of replacements
for failed non-d. hosts

i-th prediction interval
(length pil in hours)

dedicated hosts

non-dedicated hosts

...

...

...

...

...

Figure 1.3: Illustration of the resource provisioning process across many
prediction intervals

1.3 Collective Availability

As outlined in Section 1.1.2 generally it is not possible to in�uence the
short-term or average availability of a speci�c non-dedicated host1. Conse-
quently, the traditional notion of (individual) availability needs to be a re-
laxed and subsumed by collective availability introduced in [12]. The latter
is achieved if in a pool of N hosts at least n remain available over a spec-
i�ed period of time. If an application to be provisioned requests a set of n
desired hosts, the �resource owner� assigns to it a working set of N ≥ n hosts
with a speci�c level of redundancy R = (N − n)/n ≥ 1. Obviously higher
redundancy increases the chances that the collective availability is achieved.
Besides of adding redundant hosts (i.e. increasing N) it is possible to increase
the success rate of achieving collective availability by adding dedicated re-
sources (e.g. EC2 instances). The working set is then composed of d dedicated
hosts and N − d non-dedicated hosts. This approach and the availability vs.
cost trade-o�s has been studied in [13].

To ensure uninterrupted operation over a long time period the selection of
the working set needs to be repeated periodically as illustrated in Figure 1.3.
The time interval for which a working set is selected and operated corresponds
to the prediction interval pil introduced in Section 1.2.2.1. At the end of each
prediction interval hosts which dropped out needs to be replaced by other
(non-dedicated) hosts (selected via short-term predictions as shown in Section
1.2.2.1). Obviously each replacement of a failed host might incur some costs
due to transfer of working data and host setup. To quantify these costs, we
introduce the migration rate mr = m/N where m is the average number
of (non-dedicated) hosts which fail during a prediction interval (and N the

1The exception are Amazon EC2 Spot Instances, where availability can be controlled to
a large degree by setting di�erent instance bid prices. This mechanism is used in [15] for
cost-e�cient provisioning of divisible workloads.
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working set size). Note that if collective availability is always achieved mr is
never larger than (N −n)/N . The selection and assignment of working sets is
assumed to be done by a central instance, but there are no inherent constraints
to use a fully distributed (Peer-to-Peer) or a hierarchical architecture.

1.3.1 Statistical guarantees and cost vs. migration rate

The notion of collective availability allows us to give (probabilistic) avail-
ability assurances. In detail, in a single prediction interval we strive to ful�ll an
availability guarantee y de�ned as the probability that at least n of the hosts
in the (possibly larger) working set remain available over time pil. In other
words, y is a probability that the collective availability is achieved in a single
prediction interval. If there are only non-dedicated resources (i.e. d = 0) the
only way to keep availability guarantees (for desired n and y) is to adjust the
redundancy R (e�ectively, to change the total working set size N). The mini-
mum su�cient value of R depending on n and y can be derived empirically by
simulations on historical data (see Section 1.4); this relation depends on the
availability characteristics of considered hosts. Note that by only changing R
we have no control on the migration rate.

The possibility to include d dedicated hosts in our working set allows
adjusting the migration rate and gives more options how to provide availability
guarantees. On the other side, deployment of dedicated hosts incurs additional
(monetary) costs. This leads to a cost vs. migration rate trade-o�: larger
d implies lower migration rate yet higher resource costs. We introduce the
following schema to o�er the �application operator� a spectrum of options
with di�erent cost and migration rate (or reliability) characteristics.

For given n and y we compute via simulation a representative set Z of
Pareto-optimal combinations of N and d. Each pair (N, d) ful�lls the avail-
ability guarantee y and is Pareto-optimal in the sense that neither N nor d
can be decreased (leaving the other parameter constant) without violating
y. Each such pair (N, d) has an associated total cost tc (sum of the cost of
the dedicated hosts and the optional monetary costs of migration) as well as
the migration rate mr which are straightforward to calculate. Subsequently,
we sort the pairs (N, d) according to the (increasing) total cost and again
according to the (increasing) migration rate. If an application operator has
an upper bound on the total costs, to provision the application she chooses
a pair (N∗, d∗) with a total cost just below this threshold which minimizes
the migration rate. An analogous approach is used if an upper bound on the
migration rate is speci�ed. The selected combination (N∗, d∗) is then used in
the resource provisioning process over many prediction intervals as illustrated
in Figure 1.3.
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1.4 Case Studies for SETI@home-Hosts

1.4.1 Availability prediction

To illustrate the techniques from Section 1.2 we show selected results of
the availability prediction published in [12] and [13]. They were computed on
random subsets of more than 112,000 hosts that were actively participating
in the SETI@home project [16] between December 1, 2007 and end of Febru-
ary 12, 2008 (the subset sizes range from 10,000 to about 48,000). About
32,000 hosts had speci�ed host types. Of these hosts, about 81% are at home,
17% are at work, and 2% are at school. We assume that the CPU is either
100% available or 0% which is a good approximation of availability on real
platforms. The availability data per host is a string of bits, each representing
non-availability (0) or availability (1) in a particular hour.

We �rst investigate the in�uence of the host type and prediction inter-
val length (pil) on the error (MSE) of the short-term prediction. Here NB is
used as a representative classi�cation algorithm. Figure 1.4 illustrates that the
host type in�uences consistently the prediction error, with work and school
hosts being more predictable. The �gure shows also a strong in�uence of the
prediction interval length, pil, on the prediction error. This is a consequence
of increased uncertainty over longer prediction periods. We have also studied
impact of the length of the training data interval on accuracy (not shown). It
turns out that for training data sizes of more than 20 days accuracy improve-
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Figure 1.5: Comparison of accuracy of the prediction methods (pil = 4)

ments are marginal. Therefore, a training data interval of 30 days is used in
all other experiments.

As next we compare the introduced prediction techniques. Figure 1.5 il-
lustrates for pil = 4 the MSE of each prediction algorithms averaged over
500 hosts selected randomly from our data set. The boxplot shows the lower
quartile, median, and upper quartile values in the box; whiskers extend 1.5
times the interquartile range from the ends of the box while �crosses� outside
them are considered outliers. Obviously NB and Gauss have smallest median
prediction errors but all algorithms except for K∗ perform similarly well. For
pil = 1 highest accuracy was attained by simple predictors like LastVal and
NB but again the di�erences are not very pronounced (see [13]).

Subsequently, we study how derived attributes in�uence accuracy of
classi�er-based predictors. Figure 1.6 shows averages of MSEs (over 500 hosts
as above, pil = 4) for such predictors and various derived attributes added one
at a time to the base input (see Section 1.2.2.1 for explanation of abbrevia-
tions). Except for SMO and time-based derived attributes, all errors are larger.
Similarly, this holds for the case when pil = 1 (not shown).

In general, in case of this data sophisticated predictors do not have any
consistent advantage over the extremely simplistic approach such as LastVal.
One explanation is that only feature-scarce data is available for training (es-
sentially this data is just a bit string representing past availability) which is
insu�cient to create sophisticated models.
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Figure 1.6: In�uence of the derived attributes for classi�er-based prediction
and pil = 4

1.4.2 Availability guarantees

In this section we demonstrate how increasing levels of redundancy R are
needed to achieve the desired the availability guarantee y, all this depending
on the regularity rank r (Section 1.2.2.2). For this study the same data as in
Section 1.4.1 is used; see [12] for all details.

To determine the minimum necessary redundancy level R for the desired
availability guarantee y we change R and in each case observe via trace-based
simulations the success rate. The latter metric is the fraction of trials (at a
�xed R = R∗) for which collective availability has been achieved. Interpreting
the success rate as the probability of achieving the collective availability for
redundancy level R∗ we can �nd a minimum R which satis�es the desired
availability guarantee y by a simple table look-up.

We each trial we randomly choose N number of hosts from the pool pre-
dicted to be available for the entire prediction interval (with pil = 4 hours).
We run trials in this way throughout the test period of two weeks. For each
data point shown in the �gures, we ran about 30,000 trials to ensure the
statistical con�dence of our results. We also consider two regularity ranks
r = 1, 2 derived from the metrics aveSwitches. Figure 1.7 shows our �ndings
for working set sizes N of 1, 4, 16, 64, 256 and 1024. As expected, for the lower
regularity rank r = 1 much higher redundancy levels are needed to achieve
the same success rate as for r = 2. For example, with r = 2, a redundancy of
0.35 will achieve success rates of 0.95 or higher. With r = 1, only the groups
with 256 and 1024 desired hosts can achieve the same level of success rates; at
the same time, high redundancy (greater than 0.45) is required. Thus ranking
hosts by regularity levels (here using the aveSwitches indicator) signi�cantly
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Figure 1.7: Success rate depending on redundancy R for hosts with regularity
rank r = 1 (top; low predictability) and regularity rank r = 2 (bottom; high
predictability) for pil = 4
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Figure 1.8: Success rate depending on the total size N of the working set
and number d of dedicated hosts (n = 50, pil = 4, rank 4 of 4)

improves the accuracy of short-term availability prediction, and consequently
the e�ciency of achieving collective availability.

1.4.3 Cost vs. migration rate

As the last showcase of experimental results we consider mixtures of
SETI@home hosts and dedicated resources (with costs modeled after Amazon
EC2 instances) and study the trade-o�s between costs and higher migration
rates discussed in Section 1.3.1. To this end we execute trace-driven simula-
tions of the scenario from Figure 1.3 over the entire trace period excluding
the training interval.

We consider di�erent pil's of either 1 or 4 hours and independently also
conduct di�erent experiments for 4 regularity ranks r(1) to r(4) obtained by
the MSE metric (Section 1.2.2.2). We also consider di�erent numbers n of
requested hosts (50 or 100). For each n, we further vary the working set size
N such that the redundancy R varies from 1 (none) to 1.6. For eachN , we vary
the number d of dedicated hosts allocated from 0 to n. Each such simulation
is repeated 4000 (pil = 1) or 2400 (pil = 4) times with varying starting point
to ensure statistical con�dence.

For each simulation several metrics are collected. The �rst one is the suc-
cess rate de�ned in Section 1.4.1 (which corresponds to the availability guar-
antee y for each combination (N, d)). The second metric is the total cost of
achieving this service level. Here as the host cost we assume 10 US cents per
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Figure 1.9: Pareto-optimal combinations of N and d for y = 0.9,0.93 and
0.96 (n = 50, pil = 4, rank 4 of 4)

hour, which is equivalent to the hourly rate for a small instance on Amazon's
EC2. The third metric is the migration rate needed to achieve the service
level.

Figure 1.8 shows the �rst metric (success rate) depending on the total size
N of the working set and number d of dedicated hosts for n = 50, pil = 4
and rank 4 (other cases are shown in [13] with rank order �reversed�). From
these result we obtain a set Z of Pareto-optimal combinations of N and d by
�intersecting� the surface shown in Figure 1.8 with a plane parallel to x-y axis
at a desired value y of the success rate. Each pair (N, d) in Z obviously ful�lls
the availability guarantee y (and is Pareto-optimal in respect to N or d).

Figure 1.9 shows these sets for three levels of availability guarantees y
of 0.90, 0.93 and 0.96. By computing the total cost and the migration rate
for each pair (N, d) in Z we can investigate the trade-o� between these two
metrics. Figure 1.9 illustrates this trade-o� for y = 0.96 at the extreme ends
of the solution spectrum: while using no dedicated resources eliminates costs,
the migration rate is 0.1 (and working set size N becomes 62). On the other
hand, using many dedicated resources (d = 43) incurs signi�cant costs (4.3
USD per hour) but lowers the migration rate to 0.01. This e�ect allows to
select an appropriate (usually application-speci�c) combination of dedicated
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and shared hosts in order to optimize monetary costs or the migration rate or
both.

1.5 Conclusions

Lack of control on availability on individual hosts is one of the major
obstacles for e�ective usage of non-dedicated resources. In this chapter we
have outlined some approaches to overcome this problem. These approaches
combine availability modeling and schema for masking outages of individual
hosts via redundancy. Availability modeling comprises distribution models as
well as short-term and long-term characterization of individual hosts. The
major bene�t of such models is their ability to identify hosts which are likely
to be available within next few hours or which behave �nicely� in respect to
availability on a longer-term time scale. As a method for masking outages we
have introduced collective availability together with probabilistic guarantees.
To achieving collective availability at a minimal monetary and resource we
have investigated the relation between redundancy, probabilistic guarantees
and the migration rate (host replacement rate) between �provisioning epochs�.
Besides redundancy, mixing-in dedicated hosts is helpful to increase collective
availability level at a low host replacement rate yet it implies higher monetary
costs.

The proposed mechanisms assume applications which perform e�ciently
even in face of frequent failures of a signi�cant part of resources (such as
MapReduce). Adapting applications to these challenging deployment condi-
tions is a non-trivial problem which is likely to (and should) drive a part
of the activities within the researchers community devoted to non-dedicated
resources.
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