
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 1

Monetary Cost-Aware Checkpointing and
Migration on Amazon Cloud Spot Instances

Sangho Yi, Member, IEEE, Artur Andrzejak, and Derrick Kondo, Member, IEEE

Abstract—Recently introduced spot instances in the Amazon Elastic Compute Cloud (EC2) offer low resource costs in exchange for
reduced reliability; these instances can be revoked abruptly due to price and demand fluctuations. Mechanisms and tools that deal
with the cost-reliability trade-offs under this schema are of great value for users seeking to lessen their costs while maintaining high
reliability. We study how mechanisms, namely, checkpointing and migration, can be used to minimize the cost and volatility of resource
provisioning. Based on the real price history of EC2 spot instances, we compare several adaptive checkpointing schemes in terms
of monetary costs and improvement of job completion times. We evaluate schemes that apply predictive methods for spot prices.
Furthermore, we also study how work migration can improve task completion in the midst of failures while maintaining low monetary
costs. Trace-based simulations show that our schemes can reduce significantly both monetary costs and task completion times of
computation on spot instance.

Index Terms—Checkpointing, Reliability, Fault-tolerance, Cloud computing, Volatile resources.

✦

1 INTRODUCTION

THE vision of computing as a utility has reached new
heights with the recent advent of Cloud Computing.

Compute and storage resources can be allocated and
deallocated almost instantaneously and transparently on
an as-need basis.

Pricing of these resources also resembles a utility, and
resource prices can differ in at least two ways. First
prices can differ by vendor. The growing number of
Cloud Computing vendors has created a diverse market
with different pricing models for cost-cutting, resource-
hungry users.

Second, prices can differ dynamically (as frequently as
an hourly basis) based on current demand and supply
in market-based resource management system. These
systems have recently become widespread with data
center providers, such Google Inc. [1], Amazon Inc. [2]
and Enomaly [3]. By lowering server prices dynamically
during periods of low demand, data center operators can
increase the server utilization and overall profitability.

For instance, in December 2009, Amazon released spot
instances, selling the spare capacity of their data centers.
Their dynamic pricing model is based on bids by users.
If the users’ bid price is above the current spot instance
price, their resource request is allocated. If at any time
the current price is above the bid price, the request is
terminated.

Spot instances are particularly interesting for compute-
intensive jobs that are divisible. Divisible workloads,

• S. Yi and D. Kondo are with INRIA Grenoble - Rhône Alpes, France.
E-mail: sangho.yi@inria.fr, derrick.kondo@inria.fr

• A. Andrzejak is with Heidelberg University, Germany.
E-mail: artur@uni-hd.de

This paper is an extended version of our previous work entitled “Reducing
Costs of Spot Instances via Checkpointing in the Amazon’s Elastic Compute
Cloud”, which was presented in IEEE Cloud 2010 conference.

such video encoding and biological sequence search
(BLAST, for example), are an important class of appli-
cations [4]. We believe this is a common type of appli-
cation that is amenable to failure-prone spot instances.
Compared to ”classical” on-demand resources offered
by EC2, spot instances have the benefit of a price dis-
count surpassing 50% [5]. This monetary incentive can
frequently offset the drawbacks of drastically changed
availability behavior. Clearly, there is a trade-off between
the cost of the instance and its reliability.

Due to relative novelty of this resource class, there
are currently hardly any methods or middleware which
could cope or leverage changes in pricing or reliability.
While some task scheduling frameworks such as BOINC
[6] are designed for managing highly volatile resources,
none of them is capable of considering monetary costs.
Ideally, the middleware would have mechanisms to seek
by itself the cheapest source of computing power given
the demands of the application and current pricing.

In this paper, we investigate two mechanisms, namely,
checkpointing and work migration, which can be used
to achieve the goal of minimizing monetary costs while
maximizing reliability. Using real price traces of Ama-
zon’s spot instances, we study various dynamic check-
pointing strategies that can adapt to the current instance
price and show their benefit compared to static, cost-
ignorant strategies. Our key result is that the dynamic
checkpointing and work migration strategies signifi-
cantly reduce the monetary cost and shorten job com-
pletion times.

The remainder of this paper is organized as follows.
Section 2 introduces the spot instances in the Amazon
Elastic Compute Cloud (EC2), characterizes failure dis-
tribution and recovery time for out-of-bid situations and
describes checkpointing and work migration schemas.
Section 3 evaluates performance of their combinations



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 2

Fig. 1. Spot price fluctuations of eu-west-1.linux instance
types

based on the previous price history of the spot in-
stances. Section 4 describes related work. Finally, Sec-
tion 5 presents conclusions and possible extensions of
this work.

2 SPOT INSTANCES ON AMAZON EC2

2.1 System model

Amazon allows users to bid on unused EC2 capacity
provided as 64 types of spot instances that differ by
computing / memory capacity, OS type and geograph-
ical location [2]. Their prices called spot prices change
dynamically based on supply and demand. Figure 1
shows examples of spot price fluctuations for three eu-
west-1.linux instance types during 8 days in January 2010.
Customers whose bids meet or exceed the current spot
price gain access to the requested resources. Figure 2
shows how Amazon EC2 charges per-hour price for using
a spot instance. The following system model was made
according to the characteristics of Amazon EC2’s spot
instances:

⋄ Amazon provides a spot instance when a user’s bid
is greater than the current price.

⋄ Amazon stops immediately without any notice
when a user’s bid is less than or equal to the current
price. We call this an out-of-bid event or a failure.

⋄ Amazon does not charge the latest partial hour
when Amazon stops an instance.

⋄ Amazon charges the last partial hour when a user
terminates an instance.

⋄ The price of a partial-hour is considered the same as
a full-hour.

⋄ Amazon charges each hour by the last price.
⋄ Amazon freely provides the spot price history.

Fig. 2. Examples of pricing for Amazon’s spot instance

⋄ The price of Amazon’s S3 (simple storage service)
is negligible1.

2.2 Overview of the approaches

We assume a user is submitting compute-intensive jobs
that are divisible. Divisible workloads, such video encod-
ing and biological sequence search (BLAST, for example),
are an important class of application [4]. We believe
this is a common type of application that is amenable
to failure-prone spot instances. By setting the bid price
a user can partially control the monetary cost of job
execution in this scenario. However, a lower bid price
implies more frequent failures which in turn leads to
two detrimental effects:

⋄ part of the computation is lost and must be repeated,
thus increasing the monetary cost

⋄ the overall job execution time increases.

In this work we study two mechanisms for reducing
these negative effects: checkpointing and work migra-
tion.

Checkpointing. This traditional technique stores per-
sistently snapshots of the current application state and
uses them for restarting the execution at a later time.
The critical issue here is at which times and whether
checkpoints are taken. While abundant checkpoints lead
to high cumulative overhead (as each checkpoint means
lost computation time), infrequent or wrongly timed
checkpoints increase the recovery time after a failure
and cause repeated computation. The focus of this work
are policies for deciding when and whether a checkpoint
should be taken (see Section 2.3) and evaluating them in
regard to minimizing the induced monetary costs.

In case of an out-of-bid event all spot instances with
below-market bid price are terminated. Consequently,
user bids again to re-acquire resources, and when those

1. Amazon provides 1 GB-month storage service with the price of
0.15 USD. This is much lower than the price of computation during
one month [7].



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 3

Fig. 3. Combined availability of comparable instance
types for work migration (1: available, 0: unavailable)

are granted, she restarts the execution (Fig. 7). This
involves loading of the last saved application state from
persistent storage. We assume here that Amazon’s S3
service is used. As noted above, the monetary cost of
this storage is insignificant compared to lost (yet paid)
computation time. We thus consider only the latter as the
cost of checkpointing and recovery. As the actual imple-
mentation of checkpointing and recovery is application-
specific, it is not considered in this study.

Work migration. The above schema allows to change
the instance type after a failure provided that applica-
tion is flexible enough to handle different number of
cores; however, in the scenario of divisible workloads
this capability can be assumed. The idea is to bid for
another instance type (than recently used one) if this
new instance type can be acquired at a per-core price
comparable to user’s last bid price. In this way the
waiting time until recovery will be almost eliminated.
In [5], [8], [9] we have observed that low bid prices
cause job completion time to increase exponentially. By
eliminating the waiting time until re-acquiring resources
this technique effectively reduces the job completion
time without significant cost increase.

Figure 3 illustrates the benefits of this approach: at
fixed bid level, the combined availability of comparable
spot instance types (high-CPU instances in EU and US)
is much higher than that of a single instance type. In
this example, we plotted 7 days of availability (as 1)
and unavailability (as 0), and assumed a low bid price.
If we utilize 6 instance types, the combined availability
is almost 92% during 7 days, while one instance type is
available only 15∼25% during this period (at a compa-
rable per-core bid price level).

Fig. 4. Rising edge-driven checkpointing

2.3 Checkpointing schemes

We describe in this section the proposed checkpointing
schemes. Table 1 gives an overview of them.

2.3.1 Baseline comparison schemas - OPT and NONE
Two methods without practical value are included in
the evaluation for comparison. The optimal schema OPT
takes a checkpoint just prior to a failure and represents
the best possible decision strategy. The no checkpointing
schema takes no checkpoints, and has to recompute
everything since the beginning in case of a failure.

2.3.2 Hourly checkpointing - HOUR
In this schema checkpoints are taken periodically at the
boundary of each hour since start of resource usage. It is
the most intuitive one for the spot instances, because an
hour is the lowest granularity of spot instance pricing.
It also provides a guarantee of paying for the actual
progress of computation.

2.3.3 Rising edge-driven checkpointing - EDGE
Here a checkpoint is taken at each increase of spot price
of the currently used instance type, see Figure 4. Such
price increase is termed here a rising edge. Each such
event increases the probability of an out-of-bid situation,
as the difference between spot price and current bid
shrinks.

In the previous work [8], we showed that “edge-
driven” checkpointing was suboptimal because of the
bursty fluctuations of the spot price curves. This leads
to abundant checkpointing and thus high overhead. We
include this heuristic here for completeness and for
comparison.

2.3.4 Basic adaptive checkpointing - A
In this approach we decide every 10 minutes whether to
take or to skip a checkpoint. The decision is based on the
expected recovery time R(t) in case of a (future) failure.
This time is computed for both cases: if a checkpoint
is taken (Rtake) or if it is skipped (Rskip). Clearly, this
schema takes a checkpoint if Rskip > Rtake and skips it
otherwise.

This decision significantly affects the recovery time if a
failure occurs, and thus the execution time of the running
task. Section 2.5 describes how both expected times are
computed. The major input of this computation is the
probability of a failure depending on the original bid
price, time since start of the availability interval and time
since last checkpoint.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 4

2.3.5 Current-price based adaptive checkpointing - C

This schema is closely related to the previous one and
decides every 10 minutes whether to take or to skip a
checkpoint. However, decision is based on more current
information for computing the probability of a failure.
In addition to the factors influencing this probability
mentioned above (Sec. 2.3.4), we also consider the spot
price at the time of taking the decision. The rationale
here is that if current spot price is close to the original
bid price, the latter is more likely to be surpassed by the
spot price, leading to an out-of-bid event. The details are
presented in Section 2.5.

2.4 Work migration

Independently of the checkpointing schema we can
decide to change the instance type upon a failure as
outlined in Section 2.2. Heuristics for work migration
must decide on two factors. First, they must decide on
how to migrate, that is, what bid price to use on the new
instance. Second, they must decide on which instance
type to migrate to.

With respect to how to migrate, our heuristics will
place an identical bid for the new instance type. With
respect to which instance type to migrate to, our heuris-
tics are described as follows:

LP Lowest price. The heuristic chooses the instance
type with the lowest current price. The intuition
is that the lower the current price, the less likely
out-of-bid events will occur.

LF Lowest failure rate. The heuristic chooses the
instance type with the lowest failure rate. Fail-
ure distributions are computed dynamically for
each instance type, given their price trace. The
intuition is that the failure rate considers both
the user bid and the price with respect to the
likelihood of out-of-bid events.

HF Highest failure rate. The heuristic chooses the
instance type with the highest failure rate. The
intuition is that the higher the failure rates,
the higher the potential to exploit uncharged
partial-hours as described in Sec. 2.6.3.

Note that selecting an optimal instance on migration is
impossible because of ignorance of the forthcoming price
changing curves. However, there are several heuristics of
selecting the next instance type. We can select based on
the current price, or the failure arrival rate. For example,
if we want to have less failures, we can use the “lowest-
failure-arrival-first” policy, or if we want to minimize
the monetary cost, the “lowest-price-first” policy is also
possible. In this work we evaluate 3 different policies on
selecting the next instance type.

2.5 Adaptive checkpointing

In this section we describe the methods for adaptive
deciding on taking or skipping a checkpoint in schemas

TABLE 1
Checkpointing schemas and their options

Schema Description

OPT optimal strategy
NONE no checkpointing
HOUR hourly checkpointing
EDGE rising edge-driven checkpointing

A basic adaptive checkpointing
C current-price based adaptive checkpointing

Option Description

deploy work migration after a failure:
MLP : select the “lowest price” instance for migration

+M MLF : select the “lowest failure rate” instance
MHF : select the “highest failure rate” instance

+(Tw) use Tw days of past traces to estimate probability
density function of failure occurrences

Fig. 5. Examples of probability density function of fail-
ure (out-of-bid) occurrence f(t, pb) on eu-west-1.linux-
c1.medium instance type

A (Sec. 2.3.4) and C (Sec. 2.3.5). The major factor influ-
encing this decision is the expected recovery time, which
is turn influenced by the probability of an out-of-bid (i.e.
failure) event in the near future. Here we derive formu-
las to compute the expected recovery time under any
probability distribution and discuss the characteristics
of failure probability distributions observed in EC2 spot
instance data.

2.5.1 Failure probability distributions

We are interested in estimating the probability of an
instance failure (i.e. out-of-bid situation) within a time
interval t (usually it is a future time interval starting at
the ”current” time t0 at which a checkpointing decision is
taken). It is quite plausible to assume that this probability
depends on the bid price pb at which the instance has
been acquired. Therefore, we model this probability by
a discrete probability density function f(t, pb) of failure
occurrences, where pb is a parameter and t the variable
of the distribution. Figure 5 shows that (for the instance
type eu-west-1.linux-c1.medium) f(t, pb) indeed depends
on both the time interval and the user’s bid. Note that
for the low bid price of 0.075 we have high probability
that an out-of-bid event occurs fast (already within the



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 5

Fig. 6. Probability distributions of prices depending on the starting price (”From”) and time on eu-west-1.linux-
c1.medium instance type (x-axis: time in minutes, y-axis: probability)

first 100 minutes). However, for high bid price of 0.081
the out-of-bid event is less likely in the same time
interval as this the spot price rarely surpasses 0.081.
Obviously f(t, pb) can be approximated via a histogram
of availability durations (for each bid price pb) created
from the history of price fluctuations.

Considering current price. When estimating f(t, pb) at
a certain time t0 we can also take into account the current
spot price pc (i.e. at time t0) as an additional information.
Therefore we introduce a refined probability density
function fp(t, pb, pc) of failure occurrences where pc and
pb are parameters and t is again the distribution variable.

Figure 6 illustrates that pc contains essential infor-
mation to estimate failure probability (here the same
instance type as in Figure 5 is used). It shows the transi-
tion probabilities from the spot price at the begin of an
interval (”From:” label) to a new spot price (”To:” prices
in legend) depending on the interval duration (shown on
the x-axis). A line parallel to y-axis intersecting x-axis at
interval duration t (in minutes) gives for each possible
price the probability (expressed as line segment length)
that it is assumed within time t.

For example, starting at 0.076 spot price, we have
probability of about 0.3 that spot price of 0.084 has
been assumed within 270 minutes and the probability of
about 0.6 that the new spot price is 0.082, 0.083 or 0.084.
Consequently, we have a failure probability 0.6 for a bid
price pb of 0.081 or below in this time interval. However,
for the same bid price but initial spot price of 0.079
(middle chart in Figure 6) we have a probability of only
0.35 for a failure within the same time duration. This
effect can be explained by the fact that the lower-end
spot price of 0.076 is less stable and prone to ”jumps”
even to high levels than the mid-range spot price of
0.079. The comparison shows that the starting price
gives an essential information for estimating the failure
probability distribution. Contrary to this, the simple pdf
f(t, pb) (Figure 5) averages over all possible spot prices at
the beginning of the time interval.

Memoryless and memoryfull assumptions. Obvi-
ously the future price is dependent on the current spot
price. Thus, the distribution of the time to failure de-
pends on the current price. Because of this dependence,

TABLE 2
Notations and symbols for adaptive checkpointing

Notation Description

pb bid price on a spot instance type
pc current price on a spot instance type (at time tp)
tp present time (i.e. time of deciding on

skipping or taking a checkpoint)
r time to restart a task
tr number of time units needed to complete the job
tc time to take a checkpoint

f(t, pb) probability density function of a failure within
time interval [tp, tp + t] and with bid at price pb

fp(t, pb, pc) probability density function of a failure within
time interval [tp, tp + t] with bid at price pb
and considering the spot price pc at time tp

T (w, tp) expected execution time of a job with work
requirement of w time units without checkpointing
when starting at time tp

Rtake(t, tp) expected recovery time if a checkpoint at time tp
is taken and previous checkpoint was at time tp − t

Rskip(t, tp) expected recovery time if a checkpoint at time tp
is skipped and previous checkpoint at time tp − t

the failure distribution likely cannot be modeled with
an exponential distribution, which has a memoryless
property. If the failure distribution is memoryless, the
probability of a failure after time t is the same as the
probability of a failure after time s+ t, given no failure
during time s. Consequently, the failure distribution is
not memoryless and cannot be modeled by exponential
distribution. In previous work [8], we assumed that the
availability distribution follows exponential distribution,
which means the failure arrival rate f(t, pb) has a memo-
ryless property. In this work we correct this assumption
and modify the formulas in Section 2.5.2 to work with
any failure distribution.

2.5.2 Expected recovery time
Adaptive schemas A (Sec. 2.3.4) and C (Sec. 2.3.5) require
knowledge of the expected recovery time in case of a
failure. In this section we generalize and modify results
from [10] to derive formulas for these times. Table 2
describes notations and symbols relevant for adaptive
checkpointing.

As the expected recovery times are dependent on the
current spot price (since failure distributions depend on



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 6

tp

tp

(a)

(b)

t: time since last checkpoint

t: time since last checkpoint

Current time tp

Current time tp

k

k

Fig. 7. Effects of taking (a) and skipping (b) a checkpoint
on the expected recovery time

them, see Section 2.5.1) we introduce as parameter the
time tp (”present time”) at which the current price pc
is observed (i.e. a decision about the current checkpoint
is taken). Let t be time interval (in units) between last
checkpoint and tp, see Figure 7. Then Rtake(t, tp) is the
expected recovery time if a checkpoint at time tp is taken.
Analogously, Rskip(t, tp) is the expected recovery time if
a checkpoint at time tp is skipped.

To evaluate formulas for expected recovery times we
need the following theorem, where r is the overhead
time to restart a task after a failure. In the following,
f(t) describes a probability density function of a failure
(either f(t, pb) or fp(t, pb, pc)).

Theorem 1: Let w be number of time units needed to
execute a (partial) job without failures. Then the ex-
pected execution time T (w, tp) for this work in presence
of failures, without checkpointing and when starting at
time tp is

w
∑

∞

k=w f(k + tp) +
∑w−1

k=0
(k + r)f(k + tp)

1−
∑w−1

k=0
f(k + tp)

. (1)

Proof: Let k be the index of the time unit (relative
to tp) in which the first out-of-bid event occurs, see
Figure 7. The conditional expected execution time is
then:

T (w, tp) =

{

w if k≥w

k + r + T (w, tp) otherwise.

By the law of total expectation

T (w, tp) =w

∞
∑

k=w

f(k + tp)

+

w−1
∑

k=0

(k + r + T (w, tp))f(k + tp).

Rearranging with respect to T (w, tp) we obtain the de-
sired result.

In the following, let tr be the number of time units
needed to complete the job (relative to time tp).

Theorem 2: Let t be number of time units since the last
checkpoint and tp the current time. Then the expected

recovery time Rskip(t, tp) when skipping a checkpoint at
time tp is given by

Rskip(t, tp) =

tr−1
∑

k=0

(k + r + T (t, tp))f(k + tp). (2)

Proof: When a failure occurs at time unit k and
within tr time units needed to complete the job, the task
should be re-executed from the last checkpoint (taken at
the time tp − t). This implies recomputing work t+ k (in
time units). Thus,

Rskip(t, tp) =

{

k + r + T (t, tp) if k < tr

0 otherwise

By integrating above, we obtain Eq. (2).
Let tc be the time to take a checkpoint, see Table 2.
Theorem 3: Let t be number of time units since the last

checkpoint and tp the current time. Then the expected
recovery time Rtake(t, tp) when taking a checkpoint at
time tp is given by

Rtake(t, tp) =

tr−1
∑

k=0

(k + r)f(k + tp) + tc

∞
∑

k=tr

f(k + tp)

+ T (t, tp − t)

tc−1
∑

k=0

f(k + tp).

(3)

Proof: When a failure occurs at time unit k (relative
to tp) within tc time units (i.e. k ≤ tc), the task should be
re-executed from the last checkpoint, and when a failure
occurs in tc ≤ k < tr the task can be recovered from the
new checkpoint. In addition, Rtake(t, tp) has overhead
T (tc, tp) of taking a checkpoint, and thus,

Rtake(t, tp) =











k + r + T (t, tp) if k < tc

k + r else if tc ≤ k < tr

tc otherwise

By the law of total expectation, and simplifying it with
k + r, we obtain Eq. (3).

2.5.3 Variations of the adaptive checkpointing
In case of the checkpointing schema A (Sec. 2.3.4) we use
as f(t) in Section 2.5.2 the ”simple” failure probability
f(t, pb). In this case the parameter tp is not essential
since f(t, pb) does not depend on the price at the start
of the considered time interval. For more sophisticated
schema C (Sec. 2.3.5) fp(t, pb, pc) is used for f(t). Thus,
to evaluate the formulas in Section 2.5.2 we consider
a separate pdf of failure probabilities for each different
current spot price (depending on the time tp).

As noted above, both f(t, pb) and fp(t, pb, pc) are es-
timated from the price traces of EC2 spot instances.
Given that the characteristics of the spot prices change
over time there is trade-off how much of the historical
traces (relative to time of the analysis) should be used.
If we use too little of past traces, we may lose long-
term trends. Otherwise, we may lose recent behaviors of



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 7

price fluctuations. To evaluate this effect we introduce
the window size Tw of the past traces. The optimal value
of this parameter should maximize the benefit of using
past traces to expect forthcoming failure arrivals.

2.6 Further aspects

2.6.1 Generalizing the approaches
Approaches presented in previous sections have been
introduced in context of Amazon EC2 spot instances
model, but in fact they generalize easily to other sys-
tem models where resources can be aquired at time-
fluctuating prices. To facilitate a possible transfer, we
make here our assumptions explicit.

Thus, the checkpointing schemas listed in Section 2.3
two requirements must be fulfilled: (i) the cost of exter-
nal storage used for storing application state snapshots
is negligible and (ii) the price history of resources is
available. Except for these assumptions, we exploit the
hourly checkpointing schema (HOUR) is motivated by
the fact that EC2 spot prices change in only hourly in-
tervals. However, even for this special schema any other
period of price updates would work. Furthermore, our
assumption of ”memoryfull” price and failure distribu-
tions (Section 2.5.1) covers a very general case, especially
it includes memoryless cases. Note that we consider in
Section 2.6.3 strategies which are very specific for the
EC2 spot instance model yet these are independent of
the above-presented schemas.

As for the work migration schemas, our implicit as-
sumptions are that (i) there exist multiple instance types
with comparable per-core prices and (ii) the effort of
changing the instance type upon a failure is negligi-
ble. These assumptions might not be valid for other
providers than Amazon. While (i) is mandatory for the
work migration to make sense, potential monetary or
time cost incurred by change of the instance type can
be easily considered when transferring this approach to
other provider scenarios.

Summarizing, the schemas and approaches presented
above are either directly applicable to other Cloud ven-
dors or require minimal changes. On the other side, the
evaluation results presented in Section 3 are strongly
dependent on EC2 spot prices. Therefore, we include a
comparative study for other Cloud vendors as a part of
the future work (to be done as soon as resource prices
of alternative vendors are available).

2.6.2 Combining checkpointing and work migration
The checkpointing schemes presented in Section 2.3 can
be combined with the work migration schemas from
Section 2.4 in an orthogonal way. Consequently, we obtain
20 different checkpointing policies: there are 5 different
schemes (disregarding NONE), and 4 ways of work
migration (low price, high failure, low failure, none
migration). Furthermore, changing the window size Tw

of past traces further enlarges the number of the possible
policies. Section 3 presents this evaluation of a number
of relevant cases.

2.6.3 Exploiting Amazon EC2’s spot pricing rules
According to Amazon EC2’s spot pricing rules shown in
Fig. 1 users do not pay the partial-hour when Amazon
terminates the running instances. Thus, it is possible to
exploit this fact if we have precise expectation of the
forthcoming failures, and if we select the appropriate
starting (or, recovering) points on each availability du-
ration.

Circumventing payment of the last hour. Amazon
may terminate the running task with certain probability

sx =
∑k=x

k=0
fp(k+tp, pb, pc) where x is the time remaining

to the hour-boundary.
If a user delays termination of the running instance

up to the hour-boundary, she might benefit from about
expected sx×pc cost reduction for each different job
request. This is a way to circumvent payment of the last
hour, and users can utilize this approach for short-term
tasks (or task whose running times are known with high
accuracy).

Note that selecting an appropriate starting (recover-
ing) points on each availability duration is helpful to
maximize the probability sx. However, in this work we
neglect this effect and restart tasks as soon as we re-
acquire the resources. In this way, the impact of the
delayed termination does not depend on the considered
checkpointing policy.

Fluctuations make difference. In [8] we found that
bidding lower than mean price provides very frequent
fluctuations, and thus, it has more chance to utilize the
non-paying partial-hours. This is reason why the OPT
schema is much better than that of the HOUR (hourly)
checkpointing schema when the bid price is lower than
mean. Using migration on failures can utilize such fluc-
tuations to reduce monetary cost, because we can select
an appropriate instance type which is expected to get
failed within a hour. If the number of instance types
and zones will be expanded in the future, exploiting the
fluctuations via work migration will become even more
interesting.

3 EVALUATION OF THE CHECKPOINTING
POLICIES

In this section, we analyze the impact of checkpoint-
ing policies on 42 spot instance types in Amazon
EC22. We simulated the checkpointing policies based
on the real price traces in terms of the job completion
time, total monetary cost, and the product of monetary
cost×completion time with several adjustable parameters.

3.1 Simulation Setup

Table 3 shows our simulation setup in detail. We as-
sume that the checkpointing cost of running programs
is known. We used the constant value for tc, but using a
variable checkpointing cost is also possible in our system

2. We did not use all 64 instance types on Amazon EC2, because
some instances do not have a large enough amount of price traces.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 8

TABLE 3
Values of parameters used in this paper

Parameter Value

Starting date of traces for failure prediction Jan. 11th, 2010
Ending date of traces for failure prediction Jul. 10th, 2010

Starting date of traces for evaluation Jul. 11th, 2010
Ending date of traces for evaluation Sep. 29th, 2010

Minimum bidding granularity 0.001 USD

Parameter r tc tr

Value 10 mins 2 mins 1, 000 mins

model. We assume that the total work of each job is 1, 000
minutes, and we used several different numbers of days
of previous price history to get the probability density
function of the availability durations.

We implemented a simulator that reads the past his-
tory of spot price, calculates the probability density
function of availability durations and rising edges, and
simulates 20+ combinations of checkpointing policies
(see Table 1) on the 42 types of spot instances. For each
data point, we simulated 100 experiments to ensure con-
fidence of our results. In the following sections, we show
only the most effective or interesting combinations of
checkpoint policies (versus all combinations) for clarity.

3.2 Simulation Results and Evaluation

In the following, the policy OPT serves as a comparison
baseline as it is optimal in the sense that checkpoints
are taken directly before a failure. The policy HOUR
serves as another (conservative) comparison baseline
where users pay only for ”saved” computation results.

We have picked the eu-west-1.linux.m1.large as a rep-
resentative instance type to evaluate the total monetary
cost of a task, its completion time, and a product of both
as a combined metric.

3.2.1 Impact of checkpointing schemas
First of all, we present the impact of 6 checkpointing
schemas described in Table 1 with fixed parameters (with
a window size of Tw = 70 days of past traces and
without migration).

Total price. Figure 8 shows the total monetary cost
for executing a given task (1, 000 minutes) for the
investigated instance type. Obviously the edge-driven
checkpointing schema performs poorly which can be
attributed to the overhead of too frequent checkpoints in
this case. The adaptive checkpointing schemas (A and C)
result in lower costs compared with the other possible
checkpointing schemas. As expected, among these two
the heuristic C that is aware of the current price shows
better performance than the heuristic A that ignores the
current price. However, we still have a 10 ∼ 20 percent
difference between OPT and the realistic schemas.

Task completion time. Figure 9 shows the task com-
pletion time for the eu-west-1.linux.m1.large instance type.
We can observe similar differences in efficiency among
checkpointing schemas as for the monetary costs in

Fig. 8. Total monetary cost of task execution

Fig. 9. Task completion time

Fig. 8. The most interesting fact is that a lower bid prices
produce longer task completion times. This is because
the fraction of time that an instance is available decreases
with bid price. For instance, if a user has very low
bid price, the instance is infrequently available, and the
continuous periods of availability are relatively short.
Still, the difference between OPT and the other schemas
is about 10 ∼ 15 percent.

Normalized combined metrics. Figure 10 shows the
combined performance metrics i.e., the product of the
total monetary cost and task completion time. Further-
more, this product has been normalized by dividing
through the same product for OPT. Obviously adaptive
checkpointing aware of the current price (C) is better
than the others for almost all bid values. We also observe
that the performance gap between OPT and the best
schema (C) is about 20 ∼ 35 percent.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 9

Fig. 10. Product of total price and task completion time

Fig. 11. Total monetary cost of adaptive checkpointing
according to window sizes (upper figure: schema A, lower
figure: schema C)

3.2.2 Impact of the window size Tw of past traces on
schemas A and C

We study the impact of the amount Tw of past traces
on adaptive checkpointing decision (see Section 2.5.3).
Our testing targets are the two adaptive checkpointing
schemas (A and C), which are working with probability
distribution function of failures. In general, shorter win-
dow size is better if we need to catch recent behavior,
while longer window size is better when we need to
have stable statistical expectation. Thus, it depends on

Fig. 12. Task completion time of adaptive checkpointing
according to different window sizes (upper figure: schema
A, lower figure: schema C)

the trends of users’ demands on the spot market, or it
may be affected by Amazon’s supply and price regula-
tion.

Figure 11 shows the total monetary cost of the adap-
tive checkpointing schemas with different window sizes.
In case of basic adaptive checkpointing (A), it is difficult
to determine the best window size for the given bid
price. In some cases, a smaller window size is better
than a longer one, while a longer window size is better
on another bid prices. On the other hand, in the results
of schema C (aware of current price), we can observe
that a longer window size is better to reduce the total
monetary cost in almost the entire bid range. In addition,
C provides better performance than A when the bid price
is smaller than 0.163 USD, which is around mean price
(0.161 USD). Thus, when using C it can be easier to
determine the window size, while the performance is
better than A when the user’s bid price is similar to or
lower than the mean price.

Figure 12 shows a comparison of A and C check-
pointing in terms of the task completion time. Again,
C provides better performance when the window size is
longer. Heuristic A provides similar performance but is
inconsistent for different window sizes.

3.2.3 Impact of work migration schemas

Our investigation here is aimed at understanding the
impact of work migration on high-CPU instance types.
As described in Section 2.4, changing the instance type
after a failure can reduce the waiting time to re-acquire



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 10

Fig. 13. Product of monetary cost and completion time of
the optimal and hour checkpointing according to migration
policies

resources. In Fig. 3, we observed that combination of
availability on several instances can increase the fraction
of total availability even when a user makes low bid
prices among them. In this evaluation, we use the high-
CPU instance types (c1.medium and c1.xlarge) of eu-
west and us-west zones.

Table 4 shows a description of the investigated high-
CPU instance types. We did not take into account the
US-east instances, because their ranges of bid price are
significantly different from EU-west and US-west. The
extra-large (xlarge) instance types have 4 times more
computation power, mean price, and the range of bid
prices. In this simulation, we used the range of bid prices
of eu-west.medium instances, and used normalized bid
price for the other instance types with a factor of number
of CPUs. For instance, us-west.xlarge type has 20 CPUs,
so the normalized range of bid price is starting from
0.304/4 = 0.076 USD.

TABLE 4
Prices of high-CPU linux instance types (Jan. 11th to Jul.

10th 2010)

Instance type # of CPUs Lowest Highest Mean
(high-CPU, linux) (EC2 Units) bid price bid price price

eu-west.medium 5 0.076 0.103 0.080
eu-west.xlarge 20 0.304 0.450 0.322

us-west.medium 5 0.076 0.084 0.080
us-west.xlarge 20 0.304 0.750 0.321

us-east.medium 5 0.057 0.170 0.061
us-east.xlarge 20 0.226 0.690 0.242

Figure 13 represents the product of cost and time of the
OPT and HOUR schemas with different migration poli-
cies. In this result, it is hard to see a significant difference
among the migration policies, but we can conclude that
migration is extremely helpful for reducing the product
of cost and time in both OPT and HOUR checkpointing
schemas.

Figure 14 compares the performance of the adaptive
checkpointing schemas with the OPT and HOUR, in
terms of the cost, time, and their product. From the
results in Figs. 13 and 14, we see that migration can

Fig. 14. Adaptive checkpointing with migration

reduce the cost×time product, by reducing the task
completion time, which is a verification of the idea of
combining availability (see Fig. 3).

TABLE 5
Cost, time, and their product on low price bidding (USD
0.078) normalized by normal on-demand instance type

(eu.west.c1.medium)

Checkpointing policy Cost Time Cost×Time

(normalized by) (USD 3.23) (1,000 mins) (3,230)

OPT(MLP ) 0.304 1.886 0.573
OPT(no mig) 0.283 5.258 1.488
HOUR(MLP ) 0.429 2.598 1.114

HOUR(no mig) 0.427 7.983 3.409
A(Tw=112, MLP ) 0.360 2.205 0.794

A(Tw=112, no mig) 0.337 6.237 2.102
C(Tw=112, MLP ) 0.372 2.260 0.841

C(Tw=112, no mig) 0.328 6.146 2.016

Table 5 represents the normalized results compared
with the normal on-demand instance type, where the on-
demand instance is not a spot instance, but is assumed
to be available 100% without interruption from Amazon.
There, lower values are better. We compared the results
in Fig. 14 with the case of using the on-demand “eu-
west.c1.medium” instance type. The results show that
migration significantly reduces the time, but it consumes
a little bit more monetary cost. Thus, using migration
can provide better product values, and as we observe in



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 11

the results, the adaptive checkpointing policies have less
than 1 as the product of cost and time.

3.2.4 Low price bidding on 42 instance types

In the remaining subsections, we do a comprehensive
comparison of the checkpointing policies across all 42
instance types, fixing the bid price parameter. In this
subsection, we focus on bids with a relatively low price.
In the following subsection we focus on bids at the mean
price.

Table 6 shows the normalized product of the total
price and the task completion time when a user bids
a relatively low price based on the past price history.
Here, the low bid price is calculated as (mean price −
lowest price)/2, where the lowest price is the lowest
value on the range of bid prices. In this result, we
observe that checkpointing policies affect the real price
significantly. In particular, using hourly checkpointing
(HOUR) has 30 ∼ 150% overhead than the optimal,
while the best checkpointing policies on each instance
type has 10 ∼ 35% overhead. Among the checkpointing
policies, the C(112) shows the best performance on 9
Linux instance types, while the other C policies also
show good results.

3.2.5 Mean price bidding on 42 instance types

Table 7 shows the normalized cost×time product when
a user bids the mean price based on the past price his-
tory. Similar to the results in Table 6, the checkpointing
policies have significant impact on the total overhead on
executing tasks on volatile cloud resources. The C(112)
still shows better performance than others on the mean
price bidding, except for the case “us-east.m1.large”
instance type. This instance has quite different behavior
before July after, and there is less price fluctuations, and
thus, just using an hourly checkpointing can provide
reasonable performance. In our previous work [8], we
did not take into account the current price, nor the
memoryfull property of failure arrivals. Thus, in the
previous work, there was 30 ∼ 45% overhead on the
best strategy for each instance type, but in the current
work, we have only 8 ∼ 35% overhead compared with
the optimal case.

3.2.6 Impact of different task lengths

Table 8 presents the impact of the different task lengths
on the performance. In case of computing shorter tasks,
they have low overhead because there are less chances
to get the failures compared with longer tasks. As we
observe in the results, task length does not have signif-
icant impact on the performance of the checkpointing
policies. Therefore, we can use the task length used in
this work (1, 000 minutes) can be used as a reference
value to determine the best checkpointing policy with
given spot instance type, and bid price.

3.2.7 Policy comparison and result summary

Table 9 shows the best checkpointing policies for all 42
types of spot instances. We observe that the adaptive
checkpointing aware of the current price performs best
for most cases. C(112) is the best policy on 37 different
cases (including both low and mean price bidding).
However, in some instances, the adaptive checkpointing
policies were worse than the HOUR and EDGE policies
(4 cases).

Summarizing, we observe that checkpointing can sig-
nificantly affect both the task completion time and the
total monetary cost. We found that using hourly check-
pointing can reduce costs significantly in the presence of
failures. But, we also found that simple policies (HOUR
and EDGE) work well in very few instance types. By
comparing our previous results [8] and the current work,
we have found that taking into account the current price
and optimizing the amount of past traces for modeling
failure probabilities (in case of adaptive checkpointing)
can significantly reduce the performance gap between
the optimal and the tested checkpointing policies.

4 RELATED WORK

Related work on Cloud Computing include multiple
aspects: economics, management services, and fault-
tolerant middleware. Several previous works focus on
the economics of Cloud Computing [11]–[15]. However,
these works assume a static pricing model for EC2’s
dedicated on-demand instances. They evaluate the cost-
benefit of Cloud Computing compared to self-built,
dedicated infrastructures such as traditional Grids or
ISP’s. The authors focus on different types of applica-
tions including task parallel, message passing, and data-
intensive applications.

Several services for monitoring and managing cloud
applications exist [16]–[18], but these services currently
do not consider cloud costs that vary dynamically over
time. For instance, RightScale [18] is a third party cloud
computing broker that provides management services
for clouds, such as EC2. They provide several software
tools that reduce the complexity of managing and mon-
itoring cloud computing resources. However, they still
do not have any service for efficiently utilizing the spot
instances on the Amazon EC2. Instead, the users of
spot instances have to manage spot instance costs and
reliability manually and individually.

Several middleware currently deployed over Clouds
have fault-tolerance mechanisms [19]–[21], but these
mechanisms currently are not cost-aware. For instance,
Map-Reduce [19] and Condor [20] are intrinsically fault-
tolerant, but how to conduct fault-tolerance in a cost-
effective way has not been addressed. In particular,
checkpointing has been well-studied, but previous stud-
ies have not taken into account variable resource costs. In
[22], A. Duda studied the optimal placement of a check-
point if the performance overhead is constant. In [10],
Yi et al. proposed an adaptive checkpointing scheme



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 12

TABLE 6
Normalized price×time product for execution on low price bidding (digits in A() and C() are the window sizes Tw)

Linux instance Bid price NONE HOUR EDGE A(28) A(56) A(84) A(112) C(28) C(56) C(84) C(112)

eu-west.c1.medium 0.077 - 2.590 - 1.392 1.352 1.358 1.347 1.252 1.240 1.241 1.241
eu-west.c1.xlarge 0.312 - 1.966 - 1.363 1.358 1.368 1.388 1.302 1.287 1.270 1.281
eu-west.m1.large 0.155 - 2.041 - 1.419 1.426 1.426 1.425 1.291 1.250 1.254 1.254
eu-west.m1.small 0.039 - 1.857 - 1.338 1.381 1.381 1.427 1.253 1.260 1.258 1.259
eu-west.m1.xlarge 0.313 - 1.946 363.1 1.509 1.408 1.417 1.393 1.573 1.413 1.344 1.333
eu-west.m2.2xlarge 0.545 - 1.768 - 1.407 1.413 1.390 1.446 1.364 1.340 1.328 1.323
eu-west.m2.4xlarge 1.092 - 1.891 - 1.378 1.468 1.494 1.510 2.377 1.807 1.667 1.613

us-east.c1.medium 0.058 96.77 2.012 - 1.353 1.266 1.285 1.469 1.286 1.319 1.344 1.347
us-east.c1.xlarge 0.241 - 1.411 13.55 1.379 1.429 1.408 1.439 1.497 1.293 1.270 1.267
us-east.m1.large 0.141 - 1.121 2.421 1.326 1.105 1.101 1.100 2.120 2.112 2.112 2.119
us-east.m1.small 0.030 - 1.457 - 1.293 1.352 1.389 1.330 1.288 1.284 1.260 1.256
us-east.m1.xlarge 0.236 - 1.795 304.3 1.540 1.501 1.536 1.478 1.722 1.527 1.450 1.446
us-east.m2.2xlarge 0.411 - 1.675 - 1.495 1.481 1.446 1.388 1.903 1.554 1.486 1.487
us-east.m2.4xlarge 0.825 - 1.581 79.87 1.372 1.348 1.391 1.334 3.327 2.278 1.728 1.566

us-west.c1.medium 0.077 - 1.631 - 1.508 1.381 1.602 1.695 1.401 1.288 1.290 1.312
us-west.c1.xlarge 0.311 - 1.373 - 1.489 1.446 1.502 1.459 1.673 1.437 1.420 1.364
us-west.m1.large 0.156 - 1.582 262.1 1.459 1.421 1.468 1.425 1.377 1.293 1.292 1.279
us-west.m1.small 0.039 - 1.353 - 1.382 1.320 1.313 1.393 1.280 1.258 1.245 1.262
us-west.m1.xlarge 0.311 - 1.603 52.54 1.462 1.474 1.441 1.441 1.820 1.651 1.466 1.380
us-west.m2.2xlarge 0.545 - 1.576 90.30 1.489 1.474 1.486 1.442 2.202 1.494 1.400 1.364
us-west.m2.4xlarge 1.091 - 1.654 - 1.382 1.469 1.464 1.479 3.021 1.974 1.562 1.554

TABLE 7
Normalized price×time product for execution on mean price bidding (digits in A() and C() are the window sizes Tw)

Linux instance Bid price NONE HOUR EDGE A(28) A(56) A(84) A(112) C(28) C(56) C(84) C(112)

eu-west.c1.medium 0.080 - 1.959 208.6 1.478 1.521 1.533 1.508 1.296 1.297 1.330 1.316
eu-west.c1.xlarge 0.322 - 1.607 45.14 1.343 1.372 1.476 1.481 1.443 1.384 1.243 1.239
eu-west.m1.large 0.160 - 1.915 55.34 1.483 1.461 1.449 1.462 1.368 1.304 1.328 1.314
eu-west.m1.small 0.040 - 1.746 435.7 1.442 1.456 1.434 1.439 1.331 1.346 1.364 1.362
eu-west.m1.xlarge 0.320 - 1.732 92.15 1.385 1.386 1.409 1.394 1.507 1.391 1.314 1.273
eu-west.m2.2xlarge 0.560 - 1.645 71.57 1.399 1.374 1.371 1.396 1.782 1.640 1.466 1.375
eu-west.m2.4xlarge 1.121 - 1.777 27.73 1.489 1.530 1.553 1.535 2.750 2.036 1.859 1.742

us-east.c1.medium 0.060 - 1.490 94.12 1.395 1.429 1.425 1.420 1.425 1.361 1.332 1.334
us-east.c1.xlarge 0.287 1.627 1.113 1.203 1.243 1.169 1.169 1.089 1.398 1.308 1.308 1.277
us-east.m1.large 0.142 2.442 1.121 2.421 1.326 1.105 1.101 1.100 2.124 2.111 2.111 2.117
us-east.m1.small 0.032 1.343 1.119 1.099 1.223 1.100 1.101 1.102 1.085 1.096 1.095 1.093
us-east.m1.xlarge 0.245 - 1.376 11.28 1.355 1.424 1.438 1.401 1.863 1.524 1.407 1.405
us-east.m2.2xlarge 0.420 - 1.443 34.39 1.411 1.402 1.419 1.412 1.739 1.547 1.411 1.400
us-east.m2.4xlarge 0.864 18.85 1.231 3.259 1.256 1.310 1.285 1.282 3.010 1.937 1.798 1.581

us-west.c1.medium 0.080 316.2 1.313 20.21 1.359 1.372 1.402 1.392 1.330 1.270 1.269 1.242
us-west.c1.xlarge 0.320 59.46 1.297 35.03 1.432 1.377 1.385 1.369 1.768 1.465 1.398 1.385
us-west.m1.large 0.160 90.55 1.320 37.15 1.373 1.381 1.384 1.418 1.438 1.302 1.304 1.301
us-west.m1.small 0.040 380.0 1.365 34.98 1.334 1.373 1.306 1.316 1.345 1.262 1.251 1.251
us-west.m1.xlarge 0.320 844.3 1.379 20.17 1.451 1.411 1.402 1.462 1.731 1.529 1.420 1.340

us-west.m2.2xlarge 0.560 129.3 1.334 13.05 1.487 1.387 1.328 1.304 2.657 1.693 1.567 1.511
us-west.m2.4xlarge 1.120 51.61 1.373 11.97 1.362 1.379 1.401 1.366 3.186 1.935 1.499 1.403

which provides adaptive taking point decision function
when the cost of checkpointing changes over time. Their
results apply under the assumption that failures occur
according to the Poisson process. In contrast, we use the
probability density function which is calculated from the
previous traces of spot instances.

There are several challenges related to checkpointing
in context of unreliable resources such as spot instances.
The first one is finding the relationship between past
and future failures or availability for proactive check-
pointing. Much work exists on finding correlations and
dependence between failure events [23]–[26]. Another
challenge is using an efficient checkpointing method for
minimizing the expected execution time in the presence

of failures. This also has been the subject of previous
work described in [10], [22], [27], [28]. A new aspect is
understanding the impact of checkpointing methods on
the spot instances for reducing both the monetary costs
and the task’s total execution time.

In November 2010, Enomaly Inc. announced Spot-
Cloud [3], in which someone can be both as a buyer and
a seller. Using the SpotCloud, buyers can get resources
by bidding on the spot markets, and sellers can get profit
by registering their available computing resources. Thus,
in the middle, SpotCloud manages the spot price fluctu-
ations based on the supply and demand relationship.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 13

TABLE 8
Normalized price×time product for execution on eu-west-1.linux.m1.large instance type (digits in A() and C() are the

window sizes Tw)

Task length Bid price NONE HOUR EDGE A(28) A(56) A(84) A(112) C(28) C(56) C(84) C(112)

200 minutes 0.155 - 1.198 331.4 1.226 1.224 1.225 1.224 1.198 1.186 1.203 1.203
500 minutes 0.155 - 1.885 - 1.350 1.353 1.351 1.348 1.299 1.225 1.228 1.228

1, 000 minutes 0.155 - 2.041 - 1.419 1.426 1.426 1.425 1.291 1.250 1.254 1.254
2, 000 minutes 0.155 - 2.169 - 1.469 1.470 1.485 1.481 1.297 1.271 1.284 1.283
5, 000 minutes 0.155 - 2.099 - 1.423 1.432 1.451 1.447 1.283 1.273 1.279 1.280

200 minutes 0.160 54.58 1.640 17.82 1.280 1.267 1.264 1.255 1.234 1.216 1.222 1.217
500 minutes 0.160 - 1.789 47.90 1.445 1.440 1.425 1.421 1.373 1.300 1.327 1.309

1, 000 minutes 0.160 - 1.915 - 1.483 1.461 1.449 1.462 1.368 1.304 1.328 1.314
2, 000 minutes 0.160 - 1.920 - 1.549 1.525 1.516 1.490 1.405 1.306 1.339 1.321
5, 000 minutes 0.160 - 1.950 - 1.630 1.545 1.546 1.527 1.366 1.328 1.354 1.345

TABLE 9
Best checkpointing policy for each spot instance type on low and mean price bidding, in terms of price×time product

Instance zone eu-west.linux eu-west.windows us-east.linux us-east.windows us-west.linux us-west.windows
Bid price low mean low mean low mean low mean low mean low mean

c1.medium type C(56) C(28) C(112) C(112) A(56) C(84) C(84) EDGE C(56) C(112) C(84) C(112)
c1.xlarge type C(84) C(112) C(112) C(112) C(112) A(112) C(112) A(112) C(112) HOUR C(112) A(84)
m1.large type C(56) C(56) C(112) C(112) A(112) A(112) C(112) C(112) C(112) C(112) C(112) C(112)
m1.small type C(28) C(28) C(84) C(28) C(112) C(28) A(112) A(84) C(84) C(112) C(112) C(84)
m1.xlarge type C(112) C(112) C(112) C(112) C(112) A(28) C(112) A(28) C(112) C(112) A(28) A(56)
m2.2xlarge type C(112) C(112) C(84) C(112) A(112) C(112) C(112) C(112) C(112) A(112) HOUR A(56)
m2.4xlarge type A(28) A(28) A(28) A(28) A(112) HOUR A(56) A(56) A(84) A(28) A(56) A(28)

5 CONCLUSIONS AND FUTURE WORK

We investigated several different approaches to reduce
both monetary cost and task completion time of compu-
tations using Amazon EC2’s spot instances for resource
provisioning. Our main contributions are as follows:

1) We determine analytically the expected failure re-
covery time when a checkpointing is taken versus
skipped when the distribution of availability is any
general distribution. We prove the correctness of
our formulas for the expected recovery time if a
checkpoint is taken or skipped. The latter can be
used to determine adaptively whether a periodic
checkpoint should be skipped.

2) We evaluate several heuristics for checkpointing
that use various predictive mechanisms to deal
with dynamically varying prices. In our evaluation,
we use simulation based on real price traces of
Amazon’s spot instances. We find that adaptive
checkpointing that takes into account the current
price most often performs best and reduces mone-
tary costs the most.

3) We evaluate the time window used by these dif-
ferent checkpointing heuristics. We find that with
adaptive checkpointing based on the current price,
a longer window size (e.g., 112 days) often min-
imizes total monetary costs. Performance is best
with this checkpointing schema when the user’s
bid price is less than or equal to the mean price.

4) We evaluate several heuristics for work migration
across different types of spot instances. We find
that work migration can reduce execution time by
more than a factor of 2.5 compared to cases where

it is not used. The cost is only slightly higher
compared when not using migration. The heuristic
chosen does not make a significant difference in the
savings of execution time.

Our future work will include determining the appro-
priate points for task recovery to exploit non-paying
partial hours on spot instances. We are also interested in
identifying correlation between past and current prices,
between instance types, and between price fluctuations.
Another aspect of price modeling is identification and
exploiting of calendar-based effects such as price dif-
ferences between week days and weekends or changes
of day / night prices in relation to the time zone.
We will investigate how to develop robust prediction
methods to minimize monetary costs and completion
times under these schemas. Another thread of work is a
comparative evaluation of our strategies in a different
scenario scenario than Amazon EC2. It is also useful
work to find the appropriate management for the spot
prices from Cloud vendor’s perspective.

ACKNOWLEDGMENTS

This work is carried out in part under the EC
project eXtreemOS (FP6-033576) and the ANR project
Clouds@home (ANR-09-JCJC-0056-01). The authors
would like to thank the anonymous reviewers for
suggestions on improving the readability of this work.

REPRODUCIBILITY OF RESULTS

All data used in this study, the full source code of
the simulator and additional results are available at the
following URL:



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH 201X 14

http://spotckpt.sourceforge.net

REFERENCES

[1] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using a
Market Economy to Provision Compute Resources Across Planet-
wide Clusters,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’09), 2009.

[2] Amazon EC2 Spot Instances, http://aws.amaz-
on.com/ec2/spot-instances/, 2010.

[3] “SpotCloud - Cloud Capacity Clearing House / Spot Market,”
http://spotcloud.com.

[4] Y. Yang and H. Casanova, “Umr: A multi-round algorithm for
scheduling divisible workloads.” in IPDPS, 2003, p. 24.

[5] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under sla constraints,” in MASCOTS’10, August 2010.

[6] “The berkeley open infrastructure for network computing,”
http://boinc.berkeley.edu/.

[7] Amazon Simple Storage Service FAQs, http://a-
ws.amazon.com/s3/faqs/, 2010.

[8] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot
instances via checkpointing in the amazon elastic compute cloud,”
in The 3rd International Conference on Cloud Computing (CLOUD’10),
July 2010, pp. 236–243.

[9] S. Yi and D. Kondo, “How checkpointing can reduce cost of using
clouds?” in The 3rd EU-Korea Conference on Science and Technology
(EKC’10), August 2010.

[10] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking point decision mech-
anism for page-level incremental checkpointing based on cost
analysis of process execution time,” Journal of Information Science
and Engineering, vol. 23, no. 5, pp. 1325–1337, September 2007.

[11] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson,
“Cost-benefit analysis of cloud computing versus desktop grids,”
in 18th International Heterogeneity in Computing Workshop, Rome,
Italy, May 2009. [Online]. Available: http://mescal.imag.fr/
membres/derrick.kondo/pubs/kondo hcw09.pdf

[12] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-
dedicated resources for cloud computing,” in 12th IEEE/IFIP Net-
work Operations & Management Symposium (NOMS 2010), Osaka,
Japan, Apr 19–23 2010.

[13] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Ama-
zon S3 for Science Grids: a Viable Solution?” in Data-Aware
Distributed Computing Workshop (DADC), 2008.

[14] S. Garfinkel, “Commodity grid computing with amazons s3 and
ec2,” in login, 2007.

[15] E. Deelman, S. Gurmeet, M. Livny, J. Good, and B. Berriman, “The
Cost of Doing Science in the Cloud: The Montage Example,” in
Proc. of Supercomputing’08, Austin, 2008.

[16] CloudStatus, http://www.cloudstatus.com/, 2010.
[17] CloudKick: Simple, powerful tools to manage and monitor cloud

servers, https://www.cloudkick.com/, 2010.
[18] RightScale: Cloud Computing Management Platform,

http://www.rightscale.com/, 2010.
[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-

ing on large clusters,” in OSDI, 2004, pp. 137–150.
[20] M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter of Idle

Workstations,” in Proceedings of the 8th International Conference of
Distributed Computing Systems (ICDCS), 1988.

[21] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Ger-
main, T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette,
V. Neri, and A. Selikhov, “MPICH-V: Toward a Scalable Fault
Tolerant MPI for Volatile Nodes,” in Proceedings of SC’02, 2002.

[22] A. Duda, “The effects of checkpointing on program execution
time,” Information Processing Letters, vol. 16, no. 1, pp. 221–229,
Jul. 1983.

[23] S. Fu and C.-Z. Xu, “Exploring event correlation for failure
prediction in coalitions of clusters,” in SC’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing. New York, NY,
USA: ACM, 2007, pp. 1–12.

[24] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Mining for
availability models in large-scale distributed systems: A case
study of seti@home,” in 17th IEEE/ACM International Symposium
on Modelling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), September 2009.

[25] D. Kondo, A. Andrzejak, and D. P. Anderson, “On correlated
availability in internet distributed systems,” in IEEE/ACM Inter-
national Conference on Grid Computing (Grid), Tsukuba, Japan, 2008.

[26] A. Andrzejak, P. Domingues, and L. M. Silva, “Predicting machine
availabilities in desktop pools,” in 10th IEEE/IFIP Network Opera-
tions & Management Symposium (NOMS 2006), Vancouver, Canada,
April 3–7 2006, pp. 1–4.

[27] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 10,
pp. 972–986, October 1998.

[28] S. Yi, J. Heo, Y. Cho, and J. Hong, “Adaptive page-level incre-
mental checkpointing based on expected recovery time,” in 2006
ACM Symposium on Applied Computing (ACM SAC’06), April 2006,
pp. 1472–1476.

Sangho Yi received the B.E. degree in Electrical
Engineering from Korea University, Seoul, Korea
in 2003 and the Ph.D. degree in School of Com-
puter Science and Engineering, Seoul National
University, Seoul, Korea in 2008. He was a post-
doctoral researcher in Seoul National Univer-
sity, Korea, and INRIA, France, since 2011. He
has been with DMC Research and Development
Center, Samsung Electronics, Korea, where cur-
rently he is a senior research engineer. His
research interests include embedded operating

systems, fault tolerance, and volunteer computing.
Homepage: http://antiroot.net

Artur Andrzejak is a W3-professor at Ruprecht-
Karls-University of Heidelberg and leads there
the Parallel and Distributed Systems research
group. He received a PhD degree in computer
science from ETH Zurich (2000) and a ha-
bilitation degree from Freie Universitaet Berlin
(2009). He was a postdoctoral researcher at
the HP Labs Palo Alto 2001 to 2002, a re-
searcher at Zuse-Institute-Berlin 2003 to 2009
and a deputy department head at I2R Singapore
in 2010. His research interests include modeling

and dependability of distributed systems, management of data centers,
utility/cloud computing, and applications of data mining.
Hompage: http://pvs.ifi.uni-heidelberg.de/team/aa

Derrick Kondo is a tenured research scientist
at INRIA, France. He received his Bachelor’s at
Stanford University in 1999, and his Master’s
and Ph.D. at the University of California at San
Diego in 2005, all in computer science. His gen-
eral research interests are in the areas of reliabil-
ity, fault-tolerance, statistical analysis, schedul-
ing and resource management for parallel and
distributed systems. His research projects are
supported by national, European, and industrial
grants. He is co-founder of the Failure Trace

Archive, which serves as a public repository of failure traces and
algorithms for distributed systems.
Homepage: http://mescal.imag.fr/membres/derrick.kondo


