
Scalable Isolation of Failure-Inducing
Changes via Version Comparison

Mohammadreza Ghanavati, Artur Andrzejak, Zhen Dong
Institute of Computer Science

Heidelberg University, Germany
{mohammadreza.ghanavati, artur.andrzejak, zhen.dong}@informatik.uni-heidelberg.de

Abstract—Despite of indisputable progress, automated debug-
ging methods still face difficulties in terms of scalability and
runtime efficiency. To reach large-scale projects, we propose an
approach which reports small sets of suspicious code changes. Its
essential strength is that size of these reports is proportional to
the amount of changes between code commits, and not the total
project size. In our method we combine version comparison and
information on failed tests with static and dynamic analysis.

We evaluate our method on real bugs from Apache Hadoop,
an open source project with over 2 million LOC1. In 2 out of
4 cases, the set of suspects produced by our approach contains
exactly the location of the defective code (and no false positives).
Another defect could be pinpointed by small approach extensions.
Moreover, the time overhead of our approach is moderate,
namely 3-4 times the duration of a failed software test.

Index Terms—Automated debugging, version comparison,
failure-inducing changes, thin slicing, large-scale projects, soft-
ware tests

I. INTRODUCTION

Debugging is an expensive and time-consuming task in the
software development process. According to studies, half of
the programming time of the developers dedicates to investi-
gate and correct bugs. The total cost of testing and debugging
of the software development can easily range from 50 to 75
percent of the total development cost [22]. For these reasons,
automated debugging has attracted a great deal of interest.

Techniques of automated debugging attempt to find the
causes of a program failure without or with only minimal
human involvement. In practical terms, after analysis of data
obtained from testing results and code instrumentation, a
programmer is supplied by a ranked list of suspicious code
locations. By examining these locations she can possibly
identify the code fragment bearing the true defect.

Despite of indisputable recent advances ([6], [8], [3], [1],
[15], [4]), automated debugging is still facing significant
challenges preventing its widespread adoption [13]. One of
the essential ones is that while excelling at fault localization,
they usually do a poor job in facilitating fault understanding.
However, even knowing a (potential) fault location still re-
quires the developer to find out what could happen there - a
cognitively demanding task.

The second weakness of automated debugging is its limited
scalability in terms of program size. Here even pinpointing the

1On September 14, 2013, Ohloh (http://www.ohloh.net/p/Hadoop) was
reporting that Apache Hadoop has 2,280,391 lines of code.

0.1% of code which might contain the defect is not precise
enough. Such level of specificity means that on a project with
100k Lines of Code (LOC), a developer still needs to examine
100 suspicious lines to find the defect. This is beyond the
typical acceptance levels of programmers (most users do not
inspect search results after the 1st page [13]), greatly reducing
the utility of such techniques in large-scale projects.

We attempt to approach the latter problem by narrowing
our focus to scenarios where software is developed through a
series of minor modifications, with each intermediate version
being tested thoroughly. This is a typical way how medium-
size and large-size projects are developed, for example in a
setup of continuous integration testing [22]. Consequently, this
assumption is not a serious limitation, especially since our
technique targets large-size projects.

Our basic idea is to use version comparison to localize
newly introduced defects in the latest development version.
Version comparison contrasts the behavior of two software
versions under the same unit and/or integration tests. In more
detail, using static and dynamic analysis we compare the sets
of statements executed in the latest (faulty) version against
those executed in a previous (base) version. We assume here
that the faulty new version has caused a unit/integration test
to fail, while the same test succeeded on the base version.

The key advantages of our approach is its precision and
efficiency. Assuming that only the recently changed code
contains the defect (this is not always but usually true), we
can reduce the set of suspicious statements to a few LOC, see
Section III. The good news here is that size of this set depends
primarily on the size of changes (i.e. amount of differences
between commits) and not on the total project size. Assuming
frequent commits and test runs, our technique is thus likely
to scale and present the developers a small set of suspicious
statements - even for very large projects.

Secondly, we show in Section III-C that the overhead
introduced by our approach is moderate. The essential addi-
tional execution cost comes from the requirement to execute a
(crashing) test on each of the instrumented base and the instru-
mented faulty version. Due to very sparse instrumentation, the
execution time of the instrumented versions is almost identical
to the original versions. As shown in Table IV, the total time
of executing our approach is about 2.5-3.5 times the duration
of the failed test.

Finally, while not evaluated in this work, our approach is

potentially capable to contribute to failure understanding. To
this aim, one can present the developer the contents of the
relevant variables as well as execution paths in both base
and faulty versions. While this requires future work, it is a
promising and low-overhead way to supporting a developer
in making sense what has changed during the execution of
suspicious code.

In summary, this paper makes the following contributions:
• We propose and implement an approach to isolate test-

failing defects which is based on comparing subsequent
versions of software under development. It combines
static analysis (backward slicing) and information on
changed code to indicate which (small) code sections
should be be instrumented. A subsequent dynamic anal-
ysis (code coverage of a failing and passing version)
reveals the statements which are likely to contain the
defects (Section II).

• We evaluate our approach on real defects from a large-
scale software project, namely Apache Hadoop (Sec-
tion III). The results show that it can pinpoint the de-
fective statements with high precision.

• We also compare the execution overhead of the images
instrumented according to our approach against alter-
native instrumentation schemes. Our results show that
the overhead of the dynamic analysis proposed by us is
negligible (Section III-C).

This paper is organized as follows: The approach and its
implementation is described in detail in Section II. The result
of the experiments and threats to validity are presented in
Section III. Section IV considers the related work, and finally
Section V concludes the paper.

II. THE VERSION COMPARISON APPROACH

This section describes the details of our approach. As indi-
cated in Section I, we assume that software under development
evolves as a series of versions, each one checked by executing
one or more test suites. We trigger our automated debugging
approach on the event that some test T has failed while
executing the latest software version. We denote this latest
version as vf and call it a failing version. We also retrieve from
repository some previous software version vp (called passing
version) which passed T successfully; usually it is a version
directly preceding vf .

A. Approach overview

The steps of our approach are explained below and illus-
trated in Algorithm 1.

As first we retrieve the set of changes between vp and vf ,
i.e. Dif = ∆(vp, vf) and call it a difference set. This is
done with tools provided with popular software configuration
management systems like SVN, Git, CSV.

As a consequence of the failure of T on vf , the JVM (or
operating system) provides a stack trace which is analyzed
by our approach. We call the code location referenced by the
top-level entry within this trace (yet not devoted to exception
handling) a failure manifestation site or just failure site fsite.

Algorithm 1 Steps of the proposed approach
Step 1: Find the differences of versions vp and vf :

Dif = ∆ (vp, vf)

Step 2: Retrieve failure site fsite from the stack trace
Step 3: Compute backward slices for each version:

BSlicep = BackwardSlice (vp, fsite),

BSlicef = BackwardSlice (vf , fsite)

Step 4: Compute the intersections ISx = BSlicex∩Dif and
instrument versions:

vp,inst = Instrument (vp, ISp),

vf,inst = Instrument (vf , ISf)

Step 5: Execute test T on each vp,inst and vf,inst to get code
coverage profiles:

covp = Run (vp,inst),

covf = Run (vf,inst)

Step 6: Get list of suspects by applying filtering lemmas:

SuspectSet = FilteringLemmas(covp, covf)

We use fsite as seed to compute (for each version vp, vf) the
backward slice BSlicep, BSlicef [18], [16]. Essentially, it is
the set of code statements which could have affected variable
values at the failure site.

Subsequently, we compute (for each version vp, vf) the
intersection ISx of the backward slice BSlicex and the
difference set Dif as ISx = Dif ∩ BSlicex (x ∈ {p, f}).
This intersection gives us statements and method names which
are likely to contain the defect. In the next step, we instrument
the function calls within this intersection ISx for both passing
vp and failing vf version.

In the next step we re-execute the test T on the both
instrumented versions of vp and vf and record coverage
information. The results are coverage profiles covp and covf ,
i.e. reports which code has been executed in the respective
version.

The last step involves comparison and filtering of the
coverage profiles using the following lemmas.

Filtering lemmas

The following statements are included in the set of suspects:

1) All statements added to or changed in vf which are in
the failing coverage profile covf .

2) All statements deleted from vp which are in the passing
coverage profile covp.

Finally, the resulting list of suspicious statements (suspects)
together with their locations is reported to the developer as
the potential root causes of a test failure.

org.apache.hadoop.ipc.StandbyException: Operation category
READ is not supported at the BackupNode
at org...$BNHAContext.checkOperation(BackupNode.java:443)
at org...FSNamesystem.checkOperation(FSNamesystem.java:759)
at org...system.getServerDefaults(FSNamesystem.java:1019)
...
...

Figure 1. Stack trace of bug reported by Issue HDFS-3856 (bold:
failure site)

We exemplify our approach on a real defect from the
Apache Hadoop project, see Section III-A1.

B. Further aspects

In the following we discuss some secondary aspects of our
approach.

As mentioned in Section II-A, we examine the stack trace
of the test execution on vf to retrieve the failure site. However,
usually we cannot take the top-most entry of the stack trace
as this frequently points to logger code (or some exception-
handling code). Therefore we use a heuristic and check the
stack trace entries (from the topmost one) whether they point
to “interesting” code, i.e. non-library and functional code.
Figure 1 shows an example of the stack trace for issue Hadoop-
3856 (Section III-A1), where the 2nd topmost entry points to
assumed failure site.

The other aspect which requires explanation is slicing. For
a given program P and statement s with a variable v at
the program location `, a backward slice computed from s
contains all of the statements in P which can affect the value
of v [18]. It is obvious that if ` is the failure site, a backward
slice includes all of the statements which might be the root
cause of the failure at `.

However using traditional full slicing [18] results in a too
large size of slice specially in real large-scale applications. To
address this issue, we use thin slicing [16] which only contains
statements that directly affect the value of the seed statement.

C. Implementation

Our approach is implemented on the top of WALA [17]
which is a static analyzer developed by IBM. Slicing and
instrumentation are the features of WALA which making it
useful for our approach. Implementation of our approach is
designed in two parts: static analysis and dynamic analysis.
Finding version differences and computing backward slice are
lied in the static analysis section. Slicing is implemented in
WALA. For each application, WALA builds the corresponding
call graph. Next it computes backward slice using this call
graph and the failure manifestation point as a seed statement.
For compatibility with our needs, we have modified some parts
of WALA source code.

Dynamic profiling in our approach is implemented by
Shrike which is a third-party library for instrumenting Java
byte-code which is connected to WALA. It instruments the
output of the static analysis by using the predefined instru-
menting schema. Due to flexibility of instrumentation, we can
easily exclude instrumenting of some parts of the code which
is not necessary, e.g. Java libraries.

Table I
OVERVIEW OF THE TEST CASES USED IN THIS WORK

Bug issue Broken by issue Failing test case
HDFS-3856 HADOOP-8689 TestHDFSServerPorts
HDFS-4887 HDFS-4840 TestNNThroughputBenchmark
HDFS-4282 HADOOP-9103 TestEditLog.testFuzzSequences

Yarn-960 Yarn-701 TestBinaryTokens, TestMRCredentials

III. EXPERIMENTAL EVALUATION

Our evaluation tries to answer the following research ques-
tions:

RQ1. How accurate is our approach to locate failure-
inducing changes?

Here we want to evaluate whether the approach can find the
true defect location (sensitivity), and how many false positives
are contained in the final report (specificity). We show in
Section III-A the results for 4 test cases used in this study
(Table I). They demonstrate that in 2 of our 4 test cases
we could find the correct root cause of the failure without
false positives. Analysis of another case indicates that by
small extensions of our method the defect location could be
narrowed to 20 LOC. We also discuss the real bug fixes of
each issue as stated in the Hadoop bug log.

RQ2. Are there any alternatives to our approach which are
simpler yet have comparable accuracy?

This question targets the practicability of implementing our
approach, and tries to answer whether a more simple variant
of the method could yield similar results. Brief analysis in Sec-
tion III-B indicates that all of the steps shown in Algorithm 1
are necessary to achieve this level of specificity.

RQ3. What is the time overhead of our approach, and how
does it compare to alternatives?

We have collected for each of the test cases execution times
and code size in various phases of our approach (Sec-
tion III-C). This data is used to evaluate the overhead by
two performance metrics, runtime slowdown and size overhead
(Table III) and to compare them against alternative approaches.
We also show the total time of our method (Table IV).

A. Experiment setup and case studies

All our experiments were run on a 2.9 GHz Intel Dual Core
laptop with 8 GB physical memory (4 GB was allocated for
the JVM), running Linux.

In this section we try to answer question RQ1. To this aim
we use the Apache Hadoop as a real-world, complex and large-
scale project. It deploys test cases and frequent versioning
which fits our requirements. We use real bugs from Hadoop
issue tracking2 system between 15th August 2012 and 27th
July 2013. The selection of defects was done according to the
following criteria:

1) The failure should be caused by a Hadoop component
and manifest via a Hadoop test case. In other words, we
do not consider library issues or other artifacts.

2http://hadoop.apache.org/issue_tracking.html

In class: org.apache.hadoop.hdfs.server.namenode.NameNode

@@ -511,9 +511,7 @@ public class NameNode {
}
private void startTrashEmptier(Configuration conf) throws
IOException {
- long trashInterval = conf.getLong(
- CommonConfigurationKeys.FS_TRASH_INTERVAL_KEY,
- CommonConfigurationKeys.FS_TRASH_INTERVAL_DEFAULT);
+ long trashInterval=namesystem.getServerDefaults()
+ .getTrashInterval();

if (trashInterval == 0) {
return;

} else if (trashInterval < 0) {
...

Figure 2. Excerpt of code changes for issue Hadoop-8689 (simplified)

2) The bug should be well documented, and it should be
clear which update or patch caused the test to fail. We
require this information to validate the result of our
approach.

3) There should exist a passing version, i.e. a (previous)
version which passed the test which failed in a subse-
quent (failed) version.

1) Issue HDFS-3856: The first issue is an attempted
solution to a new feature request HADOOP-8689. We
explain it in more detail as a showcase for the ap-
proach. Figure 2 shows a subset of changes making up
the (erroneous) solution. A part of this patch provides
separate trash cleanup intervals (fs.trash.interval)
for client side versus the server side. However, this
change causes the test TestHDFSServerPorts to
fail due to new call getServerDefaults() in the
startTrashEmptier() function3. The failure of this test
is reported in Hadoop bug HDFS-3856.

In Step 1 of our approach (Algorithm 1) we retrieve a
passing vp as well as a failing vf code version (passing
or failing for test TestHDFSServerPorts). As shown in
Table II, the difference set Dif between vp and vf is very
large, amounting to more than 109 kLOC.

Step 2 needs the failure stack trace of the
test TestHDFSServerPorts to identify the
failure site. As shown in Figure 1, code location
FSNamesystem.java:759 is the assumed failure
site.

In Steps 3 and 4 we obtain the respective backward slices for
vp and vf (922 and 759 JVM-bytecode statements), instrument
the intersections ISp and ISf of Dif and backward slices
(544 and 445 statements). In the subsequent Step 5 we obtain
the code coverage of executing TestHDFSServerPorts
on each of the two instrumented versions vp,inst and vf,inst
(sizes 189 and 166 statements).

Finally, we can apply the filtering lemmas in Step 6. They
yield the final report which is shown in Figure 3. In the
future, we will present to the developer not only this report
but also the differences of code coverage to support failure
understanding.

3This explanation is taken from the comments on issue HDFS-3856
(Hadoop bug repository).

Suspicious failure-inducing changes:

In class: org.apache.hadoop.hdfs.server.namenode.NameNode:514

long trashInterval =
namesystem.getServerDefaults().getTrashInterval();

Figure 3. Final report for using our approach for Hadoop-3856

We also compared our suspect against the fix of this
problem, which is committed in SVN revision 1377934. We
found that indeed our hypothesis was correct. In the fix,
the previously added faulty change is replaced with a new
statement (shown in bold):

@@ -511,13 +511,13 @@
public class NameNode {
}
private void startTrashEmptier(Configuration conf)

throws IOException {
- long trashInterval = namesystem.getServerDefaults()
- .getTrashInterval();
+ long trashInterval = conf.getLong(FS_TRASH_INTERVAL_KEY
+ , FS_TRASH_INTERVAL_DEFAULT);

if (trashInterval == 0) {
...

2) Issue HDFS-4887: The following case shows a limita-
tion of our method but simultaneously points a way to extend
it.

The considered issue is a failure in
TestNNThroughputBenchmark test. It is reported
that a fix to bug HDFS-4840 is responsible for the failure.
The patch for fixing HDFS-4840 has introduced the following
new (faulty) code to the BlockManager class in HDFS
package of Hadoop. The defect here comes from stopping the
ReplicationMonitor while NameNode is still running.

if (!namesystem.isRunning()) {
LOG.info("Stopping ReplicationMonitor.");
if (!(t instanceof InterruptedException))

LOG.info("ReplicationMonitor received an exception"
+ " while shutting down.", t);

break;
}
LOG.fatal("ReplicationMonitor thread received

Runtime exception. ", t);
terminate(1, t);

Our approach applied to this case gives (after the filtering
lemmas) an empty list of suspects, which shows a limita-
tion of our method. The difficulty is caused by the small
size of the set of instrumented statements (9 statements per
version). Consequently, the coverage profiles have only 2
statements each (see Table II, middle rows). Both coverage
profiles Covp and Covf contain the same statements, namely
a while-statement (line 3092 of BlockManager-class) and
thread.sleep()-statement (line 3096 of same class).

However, after investigating additional information provided
by instrumentation (not used in this work) we discovered
that the values of the conditional expression in the while-
statement are different in vp,inst and vf,inst. It is an easy
extension of the current approach to consider such information.
By extending the filtering lemmas we can then include in the

final report the conditional statements with diverging condition
values.

Even assuming that the while-statement would be in-
cluded in the final report, it is not the precise root cause
of the failure. However, this statement is within the method
run() in the inner class of ReplicationMonitor in the
BlockManager class. The method run() (about 20 LOC)
indeed contains the defect. Thus, by small extension we can
at least indicate the method with the actual defect.

An investigation of the actual fix which is committed in
SVN revision 1501841 shows that (because the defect is
outside the changes), merely deleting the added changes from
the new version does not solve the problem. In fact, to fix
this bug, a check statement (shown in bold in following) was
added to the conditional branch in the code:

@@ -3129,6 +3138,9 @@
if (!namesystem.isRunning()) {
...
break;

} else if (!checkNSRunning &&
t instanceof InterruptedException) {

LOG.info("Stopping ReplicationMonitor for testing.");
break;

}
LOG.fatal("ReplicationMonitor thread received

Runtime exception. ", t);
terminate(1, t);

3) Issue HDFS-4282: Bug issue HDFS-4282 reports the
failing of TestEditLog.testFuzzSequence test. Com-
ments in the issue show that this test is broken by HADOOP-
9103. Due to errors in decoding Unicode characters, in
HADOOP-9103 a patch is created which has modified code of
UTF8 class in Hadoop Common project. However, this patch
caused a failure of TESTEditLog test.

After applying our approach to this test case, the results
point that the changes created in HADOOP-9103 are not
faulty. However, the only difference in the execution profiles of
passing and failing runs is a call of the method toString()
in UTF8 class of the io package of Hadoop Common project.
Also here Table II (bottom rows) give the sizes of code over
all phases of our approach.

By investigating the execution profiles, we created a hy-
pothesis that a solution to this bug is to add methods re-
lated to the toString() function. The real fix to this
bug (committed in SVN revision 1418214) confirms our
hypothesis. A new method toStringChecked() (with
IOException) is added to the UTF8 class which now can
throw an IOException for invalid UTF8 characters4.

4) Issue Yarn-960: Bug reported in issue Yarn-960
manifests in failure of tests TestbinaryTokens and
TestMRCredentials. The reported reasons are changes
committed for issue Yarn-701. Unfortunately, when applying
our approach to this bug, we can not find the root cause of
the error.

As we mentioned in the Section II (Step 2 in Algorithm 1),
our approach needs a failure manifestation site in the failing
version. However, in the stack trace of the failing executions

4https://issues.apache.org/jira/browse/HDFS-4282

Table II
CODE SIZE (#LOC OR #JVM-BYTECODE STATEMENTS) IN DIFFERENT

PHASES OF OUR APPROACH; Dif = DIFFERENCE SET (IN #LOC), BSlice
= BACKWARD SLICE, IS = INTERSECTION SET, Cov= COVERAGE PROFILE,

REPORT = FINAL REPORT (IN #LOC)

Issue Version
Size

Dif
BSlice IS Cov

Report
(#LOC) (#LOC)

HDFS-3856
passing

109207
922 544 189

1
failing 759 445 166

HDFS-4887
passing

1030
9 2 2

0
failing 9 2 2

HDFS-4282
passing

1325
795 367 88

1
failing 800 372 89

we can find only code locations in the third-party java libraries
and the Junit framework. In our current experimental setting
we cannot analyze these libraries (see the scenario description
and assumptions in Section III-A). However, our approach fails
in this case not due to a fundamental limitation but due to a
(current) technical constraint that third-party artifacts like java
libraries cannot be analyzed.

B. Complexity of the approach

RQ2 can be partially answered by inspecting Table II. It
shows the size of intermediate and final results in LOC (for
Dif and Final Report) or JVM-bytecode statements (1-3 such
statements typically correspond to 1 LOC). Note that in Dif
a replaced line is counted twice - as an added and a removed
line.

As an alternative to the Algorithm 1, we could have used the
intermediate results for producing the final report. Specifically,
this report could be based only on the code changes Dif , or
only on the backward slice BSlice, or on the intersection set
IS, or on the coverage profiles Cov. For issues HDFS-3856
and HDFS-4282 executing all steps is the right way to achieve
high specificity. Judging by these cases, our approach cannot
be simplified.

However, for issue HDFS-4887, using any of the BSlice,
IS, or Cov is feasible, and could have led to pointing to the
vicinity of the true defect (see Section III-A2). This indicates
that we could consider a dynamic workflow, where a result
of an intermediate step is used directly for the final report, if
its size is below a certain threshold. This is subject to future
work.

C. Performance evaluation

To answer RQ3, we first evaluate Table III. In a pair
X / Y , X represents the run-time slowdown, i.e. ratio of
time to execute the instrumented version divided by time to
execute the non-instrumented version. Furthermore, Y is the
size overhead of instrumenting, i.e. size of the instrumented
version divided by size of the original version.

The time and size overheads of the fully instrumented code
(Full instr.) are significant. Code size increases by factor 4-5,
and execution time up to factor 3.3. Thus, full instrumentation
is not efficient. However, instrumenting only the code in the
backward slice (BSlice instr.) produces acceptable overheads.

Table III
OVERHEADS OF OUR APPROACH COMPARED TO FULL INSTRUMENTATION
(FULL INSTR.) AND INSTRUMENTING ONLY THE CODE IN BSlice (BSlice
INSTR.); IN “X/Y ”, X IS THE RUN-TIME SLOWDOWN (A FACTOR) AND Y
SIZE OVERHEAD OF INSTRUMENTING (A FACTOR); P = PASSING VERSION,

F = FAILING VERSION, “-” = INSTRUMENTATION NOT POSSIBLE

Issue Ver.
Original version Full BSlice Our
Run Size instr. instr. approach

time (s) (MB)

HDFS-3856
p 6 4.8 - / 4.60 1.20 / 1.04 1.00 / 1.00

f 6 4.1 - / 5.40 1.00 / 1.02 1.00 / 1.00

HDFS-4887
p 9 4.8 1.60 / 4.60 1.00 / 1.00 1.00 / 1.00

f 9 4.8 1.60 / 4.60 1.10 / 1.00 1.10 / 1.00

HDFS-4282
p 30 4.4 3.30 / 4.60 1.10 / 1.04 1.03 / 1.02

f 30 4.4 3.00 / 4.60 1.03 / 1.04 1.00 / 1.02

Table IV
RUNNING TIMES OF A FAILING TEST AND TIMES FOR VARIOUS PHASES OF

OUR APPROACH (TIMES IN SECONDS); TOTAL / TEST IS THE RATIO OF
TOTAL APPROACH TIME TO TEST TIME

Issue
App. time for passing + failing version Test Total /
Slicing Instr. Run Total time Test

HDFS-3856 4 4 12 20 6 3.3
HDFS-4887 2 2 18 22 9 2.4
HDFS-4282 4 4 64 72 30 2.4

Even so, our approach beats the alternatives, having negligible
overheads due to instrumentation.

Even more interesting is Table IV which contrasts the
running time of the failed test (Test time) against the total
time needed to execute our approach (Total). As shown in the
column Total / Test, the total time of our approach requires at
most 3.3 times the duration of the failed test, and the latter is
just one of many tests executed within a test suite.

D. Threats to Validity

Like in any empirical study, there are some threats to
validity in our evaluation. First, we use only four bugs. This
is not a sufficient sample size to draw general conclusions,
especially in respect to applications. Note that the reason of
using a small set of bugs in this study is that finding the real
bugs and reproducing them is a time-consuming job.

Secondly, we focus on finding failure-inducing changes
which are caused by changes in the faulty version vf . How-
ever, it is be possible that the actual bug has been introduced
already in an older version (vp or before) but manifests only
with changes yielding vf .

IV. RELATED WORK

Recently automated debugging has attracted a great deal of
interest. Here, we focus on works which are closely related to
our approach.

With increasing size of software, debugging software ver-
sions before committing them to the repository is an important
step. Approaches in [14] and [2] generate an alternative input
(which differs from failing input in the control flow behavior)
and then compare their executions to find the root cause of the
failure. [2] combines slicing and symbolic execution to locate

the faulty code in a modified version of a program. However,
these approaches incur large overheads.

One other interesting approach closely related to our work
is delta debugging introduced in [20] and extended in [21].
These methods have significant limitations, namely high false
positive ratio and large amount of tests. This encouraged
others to improve on delta debugging, see [12] and [19].
Delta debugging differs from our version comparison as the
former narrows down the search space (to locate suspicious
changes) gradually, by applying changes to the application
iteratively. This requires lot of test repetitions, creating large
time overhead.

Program slicing is another debugging technique which is
introduced in [18]. Due to large size of the slice, different
approaches ([11], [7], [23], [24]) have been proposed to reduce
the size of slice efficiently. Despite of these improvements, the
sizes of slices are still fairly large in real-world applications.
To address this issue, thin slicing has proposed in [16]. We
use this technique for computing the backward slice in our
approach (see Section II-B).

In [5], program slicing is used in combination with delta de-
bugging to narrow down the search space of failure. While [5]
is focused on the changes in the input, our approach concen-
trates on the changes in the source code.

Another approach in debugging is spectrum-based tech-
niques which collect the execution information of faulty and
correct runs and compare them to find the root cause of the
failure [6], [4]. This technique differs from our approach in
that we use just one failing and one passing run.

Statistical techniques are used in [9], [10] and [3] for bug
isolation. Statistical debugging analyzes a large amount of
executions gathered from running the instrumented application
to rank the suspicious predicates which are highly relevant
to the bug. Contrary to our approach, the requirements on a
large amount of executions create significant time and resource
overheads.

V. CONCLUSIONS AND FUTURE WORK

We have presented a scalable approach to isolating failure-
inducing changes which exploits version differences together
with static and dynamic code analysis. Our method has two
essential strengths. First, the size of the set of suspicious
statements is proportional to the size of recent code changes,
making it potentially applicable to very large projects. Sec-
ondly, the additional runtime overhead is on the order of
executing a test triggering bug search. This allows for inte-
grating our approach in a traditional testing process in order
to enhance test outcomes with locations of potential defects.
Our preliminary evaluation on a large-scale project (Apache
Hadoop) shows that results are promising, and the approach
could locate a part of the true defects with high accuracy.

Our approach has also some limitations. The most important
one is the property that we can isolate only these defects
which cause a failure of a software test. As pointed out by an
anonymous reviewer, this ignores the fact that some defects

remain latent for long periods, until the are discovered by end
users.

In our future work, we will target the following challenges.
Extended evaluation. We will evaluate the approach on more
bugs (also artificial defects) and other applications.
More runtime facts. Dynamic analysis will consider not only
code coverage, but also other runtime information, like value
of conditional expressions.
Adaptivity. We will experiment with modifying the steps of
our method depending on the sizes of intermediate results.
Supporting failure understanding. We will study whether
contrasting runtime data collected during the passing and
failing run can help the programmer to understand the causes
of the failure.
Enhancing tools for continuous integration. As a long-term
project, we plan to integrate these methods in wide-spread
testing tools like Jenkins to support wide-spread adoption of
these techniques.

ACKNOWLEDGMENTS
We would like to thank the members of PVS group of

Heidelberg University, Felix Langner and Lutz Büch for their
useful suggestions. This work is supported in part by the grant
AN 405/2-1 entitled Automated, minimal-invasive Identifica-
tion and Elimination of Defects in Complex Software Systems
financed by the Deutsche Forschungsgemeinschaft (DFG).

REFERENCES

[1] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In ICSE,
2010.

[2] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang. Golden
implementation driven software debugging. In FSE, 2010.

[3] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In
ICSE, 2009.

[4] W. Eric Wong, V. Debroy, and B. Choi. A family of code coverage-based
heuristics for effective fault localization. J. Syst. Softw., 83(2):188–208,
Feb. 2010.

[5] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. In ASE, 2005.

[6] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE, 2005.

[7] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett.,
29(3):155–163, Oct. 1988.

[8] B. Liblit. Cooperative Bug Isolation: Winning Thesis of the 2005 ACM
Doctoral Dissertation Competition, volume 4440 of Lecture Notes in
Computer Science. Springer, 2007.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI, 2003.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In PLDI, 2005.

[11] J. R. Lyle and M. Weiser. Automatic program bug location by program
slicing. In International Conference on Computers and Applications,
pages 877–882, 1987.

[12] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In ICSE,
2006.

[13] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, 2011.

[14] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: an
approach for debugging evolving programs. In ESEC/FSE, 2009.

[15] J. Roessler, G. Fraser, A. Zeller, and A. Orso. Isolating failure causes
through test case generation. In ISSTA, 2012.

[16] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.
[17] WALA. http://sourceforge.net/projects/wala/.
[18] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–357,

1984.

[19] K. Yu, M. Lin, J. Chen, and X. Zhang. Practical isolation of failure-
inducing changes for debugging regression faults. In ASE, ASE 2012,
2012.

[20] A. Zeller. Yesterday, my program worked. today, it does not. why?
SIGSOFT Softw. Eng. Notes, 24(6):253–267, 1999.

[21] A. Zeller. Isolating cause-effect chains from computer programs. In
FSE, 2002.

[22] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[23] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with
confidence. In PLDI, 2006.

[24] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.
In ICSE, 2003.

