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Abstract—Memory-related software defects manifest after a
long incubation time and are usually discovered in a production
scenario. As a consequence, this frequently encountered class
of so-called software aging problems incur severe follow-up
costs, including performance and reliability degradation, need for
workarounds (usually controlled restarts) and effort for localizing
the causes. While many excellent tools for identifying memory
leaks exist, they are inappropriate for automated leak detection
or isolation as they require developer involvement or slow down
execution considerably. In this work we propose a lightweight
approach which allows for automated leak detection during the
standardized unit or integration tests. The core idea is to compare
at the byte-code level the memory allocation behavior of related
development versions of the same software. We evaluate our
approach by injecting memory leaks into the YARN component
of the popular HADOOP framework. The results show that the
approach can detect and isolate such defects with high precision,
even if multiple leaks are injected at once.

Index Terms—Software Aging, Memory Leaks, Automated
Testing, Automated Debugging

I. INTRODUCTION

Latent software defects such as memory leaks become
observable only after a prolonged execution time of the process
image - a time ranging from hours to weeks. This property
is responsible for the costly consequence that such defects
are likely to escape the traditional testing process and are
discovered for the first time in a production scenario. Another
problem is that even if noticed, the root causes of such defects
are difficult to isolate. As a consequence, such defects create
very high follow-up costs. These include operational costs
due to system performance and reliability degradation, pro-
gramming and configuration effort for workarounds (usually
scheduled restarts), and debugging work for localizing the root
causes.

Memory leaks are only a special (albeit quite frequent) case
of software aging defects. The software aging phenomenon
is described as a progressive performance or functionality
degradation in a software system [1]. Typical causes are
unreleased resources (such as heap memory or file descriptors),
accumulation of numerical errors, and file system degradation.

A recent study of bug reports in large open-source projects
[2] estimates that about 1% of all discovered malfunctions

belong into this category. However, due to the factors de-
scribed above the impact of such defects is among the most
detrimental on the overall cost-of-ownership of a software
system. Aging issues occur in any type of software that is
sufficiently complex, but it is particularly troublesome in long-
running applications. Examples include telecommunication
systems, web-servers, web-service middleware [3], or cloud
computing infrastructure [4].

Until today, the primary technique to combat software
aging are controlled restarts known as software rejuvenation
[5]. The major handicap of this solution is its focus on the
elimination of aging symptoms after the defective software
system has been already deployed. A more effective way of
dealing with aging would be to detect, isolate and remove the
defects already at the software development stage, preferably
during the integration tests. However, the latent nature of
these defects make this undertaking very difficult without
considerable additional resources in terms of time and hard-
ware. As aging is usually noticeable only after a prolonged
execution, currently scenario-tailored stress or performance
tests are used to identify this phenomenon. Such tests require
a dedicated infrastructure (ideally similar to the deployment
environment) and need to run for many hours. Especially the
latter requirement can be hardly fulfilled during integration
tests, and so testing against software aging remains a very
rare exception.

In case of memory-related defects, the tool support is quite
good [6]. The primary focus of these tools is to help in
isolating the root cause of aging or to detect usage of non-
allocated or already deallocated memory (see e.g. Electric
Fence). Only few of them attempt to discover the presence of
aging in the first place. Another disadvantage of these leak-
detection tools is that they can be hardly used for automated
detection of memory leaks. This is caused by the necessary
developer involvement to verify the potential leaks (e.g. in case
of LeakBot) or a huge execution slowdown (Valgrind).

This work in progress proposes an approach for automated
detection of memory leaks with low runtime and setup over-
head. It targets specifically the development scenario (or the
software update process) and can be used for leak detection
during unit or integration tests. It exploits differences in the



behavior of memory allocation of related (usually subsequent)
versions of software under development. Specifically, we com-
pare (between older and newer software versions) the amount
of allocated heap memory for each individual allocation site
in code (e.g. each usage of new in Java).

In this way we are able to detect memory leaks with
negligible runtime overhead. Moreover, we can also isolate
the root causes with high precision. Combined with the very
modest effort of setup and code instrumentation, the approach
can be realistically applied in traditional testing processes.

This paper is structured as follows. Section II describes
the problem context and presents the details of our approach.
Section III contains the description of evaluation environment
and experiments and shows the results of the evaluation.
In Section IV we discuss the related work and state our
conclusions in Section V.

II. DESCRIPTION OF THE APPROACH

This section describes the key concepts of our approach.

A. The concept of version comparison

Our approach assumes the existence of two versions v0
(“base”), v1 (“target”) of a software artifact which differ by
some changes introduced in the development process. A typi-
cal example are versions between one or more code commits in
a development of a (non-trivial) project. Due to code changes,
the newer version v1 might have some (additional) memory
leak defects. The key idea is to compare the memory allocation
behavior of both versions under the same workload. If any
(significant) differences or anomalies are observed, they are
likely to indicate new aging defects.

In our previous work [7] we used this idea to compare the
cumulative heap memory usage (after a run of unit or integra-
tion test) via operating system metrics, specifically Resident
Set Size (RSS). However, this approach is less sensitive (new
leaks with low memory usage can be “covered up” by other
allocation sources) and does not support defect isolation.

In this paper we refine this approach by investigating heap
memory allocation sites, i.e. code locations which use new
in Java or malloc in C. We compare behavior of each pair
of corresponding allocation sites between versions. Increased
memory allocation (in the newer version v1) for a specific pair
of allocation sites is likely to indicate a new aging defect.

Of course, version v1 might contain some newly introduced
allocation sites (not matched in v0). If any such site has high
final memory allocation after a test run, we list them as a
potential defect source to be examined by the developer.

B. Technical implementation

The preliminary step consists of code instrumentation to
record amount of heap memory allocated at each allocation
site. To this end we implemented a Java agent named LIVE
OBJECT MONITOR (LOM). It is based on the Java-allocation-
instrumenter [8] and monitors object allocations and their
destruction by the garbage collector. As a negative side-effect,

it delays the instantiation and destruction of objects due to the
monitoring process.

Given a target software version (i.e. v1), we execute a unit or
integration test (taken from a regular test suite for the particular
software) under LOM instrumentation. During execution, our
tool records a list of all allocation sites that have been active
during execution. In addition, it also creates a list Heap(v1)
of all Java objects (and their memory size) which are alive
after the test finished (but the JVM is not yet shut down) -
called residual objects. Each such object is annotated by an id
of its allocation site. To simplify further analysis, we group all
residual objects with the same allocation site into an allocation
family.

The subsequent filtering step compares this data with the
analogous data collected previously for v0 (i.e. Heap(v0); note
that for each development version, collected data can be used
twice: first for the target v1, later for the base v0). To this end
we remove from Heap(v1) one object of instance family f for
each object of the same instance family found in Heap(v0).
If all objects of a specific instance family f could be removed
from Heap(v1), we mark the corresponding allocation site
as “clean”. Consequently, the remaining allocation sites have
more object allocations in v1 than in v0. They are subject to
further investigation.

C. Analyzing suspicious allocation sites

If the process described above reports any new suspicious
allocation sites, we rank them primarily by the defect type
(below) and secondarily by the amount of leaked bytes. The
defect types are defined as follows:

a. The allocation site S is new in the sense that it is
present in v1 but not in v0. Such site is considered
as a potential leak and the amount of leaked bytes is
defined as the total memory consumption all of the
residual objects for S for the execution of v1.

b. The allocation site S exists in both v0 and in v1. In
this case the amount of leaked bytes is defined as
the total memory of all residual objects for S in v1
minus the memory of the residual objects for S in
v0 (i.e. extra memory allocated during execution of
v1).

In a development scenario, the resulting ranked list would be
transferred to the developers for further investigation. As the
description of each potential defect also states the allocation
site, the developers can quite easy debug whether any such
list item is a false alarm or a leak.

III. EXPERIMENTAL EVALUATION

We evaluate our approach via experiments described in Sec-
tion III-A. The obtained results are summarized and discussed
in Section III-B.

A. Experimental setup

We prepared a test environment by introduced artificial and
“parametrizable” memory-leaks defects into several develop-
ment versions of the open source project APACHE HADOOP



[9]. These defects are inserted into to YARN Resource Man-
ager component of HADOOP.

1) System under study: All experiments were executed on
a virtual machine with four dedicated cores (i7 CPU with 2.4
GHz) and 3GB of main memory running UBUNTU 12.04 64-
bit.

We installed four different development versions of
APACHE HADOOP retrieved from the source code repository.
The selection of these versions is based on the number of
changes affecting the YARN component, which provides the
resource management functionality for HADOOP.

The latest unstable release 2.0.3-alpha servers us as the
initial (h0) version for the approach. We use three succeeding
development versions, numbered h1 to h3.

2) Integration test scenario: We select k-means clustering
from the MAHOUT machine learning library (snapshot ver-
sion 0.8) [10] as the map-reduce algorithm to be executed
by the different HADOOP versions. As input data we use
synthetic_control.data provided by the MAHOUT examples.
We vary the number of map-reduce jobs by setting a very
high convergence goal yet limiting the number of iterations i
to i ∈ {1, 5, 10}. Since the k-means algorithm creates a new
map-reduce job for each iteration, we can thereby control the
length of the test.

All runs are executed 10 times to obtain higher confidence
in results.

3) Artificial memory leak defects: For programming lan-
guages with managed memory like Java, software aging is
frequently caused from repeatedly inserting objects into col-
lections (e.g. lists) without proper removal of unused/expired
objects. We also follow this schema. Our artificial leaks are
configurable in their strength (i.e. the amount of memory being
leaked with each activation) denoted by parameter s. The
used leak objects are byte arrays with a randomized length
drawn from a continuous uniform distribution unif(1, s).
This randomness makes results more “unpredictable” and
therefore more natural. For simplicity the parameter s is one
{1, 10, 100, 1000}.

The artificial defect are identified by numbers from 1 to 5
(where defect 5 is a real memory leak defect discovered in
the HADOOP development; its strength is neither configurable
nor randomized).

B. Evaluation

Following [11] we use the absolute rank of a potential
defect to measure the efficiency of the defect detection. We
assume that only ranks 1 to 20 are significant, assuming that
a developer would investigate only at most the first 20 entries
of a defect report. The distribution of the ranking results is
visualized by box plots which use data from all 10 test run
repetitions. The top ranked (i.e. most significant) defect has
rank 1. We inverted the scaling of the rank axis in order to
make it easier to compare the different plots with each other.

Figure 1 shows the ranks of the artificial defects of type
a., i.e. for allocation sites that occur for the first time. In the
base software version v0 all artificial defects are deactivated.
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Figure 1. The absolute rank of defects of type a
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Figure 2. The absolute rank of defects of type b for comparison partners
having the same defect enabled but with values of the strength parameter
(larger strength parameter on the x-axis)

The applied workload was an integration test with number of
iterations i = 1. We obtain the target software version v1 by
enabling one of the four artificial defects 1 to 4.

Figure 1 indicates that our approach works well for the
defects of type a. The medians have rank 1 (i.e. in at least
half of the considered cases the artificial defect is correctly
ranked as first). The outliers are not worse than 6. These results
are independent of the strength parameter s and the HADOOP
version of the defective comparison partner.

In Figure 2 we plot the impact of the strength parameter
s on the rank for the artificial defects of type b. The target
software version v1 is compared against the version v0 with
the same detect id enabled. However, they have different leak
strength factors (v1 has larger leak strength factors). All target
versions v1 are derived from all HADOOP versions h1 to h3.

The quality of ranking increases with the strength factor
s (there are less outliers with higher ranks). This can be
explained by the fact that the amount of leaked bytes is the
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Figure 3. The absolute rank of defects of type b for different amount of
code changes between target version v1 (first left) and base version v0

secondary ranking criterion. A leak with higher strength (more
leaked bytes) is thus ranked higher.

Figure 3 illustrates how the amount of code changes be-
tween comparison partners (v0 and v1) influence the quality
of results. The amount of code changes is proportional to
the “distance” between software versions. The defective target
version v1 is based on the newest HADOOP h3, while v0
is based on the HADOOP version shown on the x-axis (the
amount of changes increases from left to right). For h3, the
base version v0 differs from v1 only by the defect config-
uration. As expected, greater version distance translates to
lower quality of the ranking. This can be explained by the
fact that larger code differences imply stronger deviations of
(non-defective) memory allocation patterns. This creates noise
and makes harder to rank leaks correctly.

In summary the artificial defects have a reasonable rank (i.e.
below rank 20) for all test scenarios in almost all experimental
results. Defects of type a. can be detected more easily, as their
ranks are in majority of cases between 1 and 5. Type b defects
could not be detected as easily and they have ranks ranging
between 1 and 10.

The accuracy of our approach depends to a large degree
on the amount of code changes between the two comparison
partners. The closer the software versions, the more exact the
ranking of the artificial defects. Also the strength of a defect
is an important factor, as it exposes the leak more clearly.

IV. RELATED WORK

Over the past decades software aging research was mainly
focused on software rejuvenation [5]. Thereby controlled
restarts are utilized to mitigate the symptoms of software
aging. These restarts are either scheduled periodically or
adaptively [12]. Both variants require modeling of the software
aging that affects the system [13], [14]. The most intensively
investigated scheduling paradigm is the adaptive scheduling
also referred as proactive rejuvenation.

Proactive rejuvenation is either based on analytical methods
or measurements. The survey in [15] provides an outline of
existing work following the former approach and the later
approach is covered by [3], [13], [16], [12], [17]. Since the
primary goal is to minimize rejuvenation cost and maximize
system availability branches like recovery oriented computing
also study how to optimize the actual restart process [18], [19].
Also virtualization and replication are deployed to provide
uninterrupted service for software that suffers from software
aging despite the rejuvenation procedures [20], [16], [21].

All rejuvenation-based approaches only reduce the symp-
toms of software aging, but they do not help to remove
the aging-related defects. An alternative active research area
concerns the memory debuggers [6]. Their utility is restricted
to memory leaks, a special case of software aging. These
tools help to isolate memory-related defects in the source
code of a program and can be categorized by the their
appliance technique (i.e. static analysis, compile/link time-
based or runtime-based).

Most related to our approach are LeakBot [22] and
LeakChaser [23], since they both are runtime-based and de-
veloped for the Java Virtual Machine. However, they are not
able to detect aging during unit or integration tests as they
require human involvement to interpret results.

The version comparison approach was introduced in our
previous work [7], where we used operating system metrics
to compare the memory consumption behavior of two versions
of the same software. In this we extended and improved this
approach by using using monitoring of memory allocation
on the level of individual allocation sites. This increased
the sensitivity to leaks and allowed defect isolation (root
cause analysis). Due to low runtime overhead of our method
(investigated but not shown in this work) our method can
enhance unit or integration tests with capability of detecting
memory leaks.

In another recent approach, accelerated tests based on aging
factors are used to reduce the time to model the software aging
of a system [24], [25]. These method could facilitate using leak
detection during unit or integration tests. However, currently
it does not reduces the detection time significantly.

V. CONCLUSION

In this work we proposed and evaluated a new approach
to early detect software aging related memory leak defects
during the software development using automated tests. The
evaluation results confirm that this approach can pinpoint
the root causes of memory leak defects in a realistic usage
scenario. Therefore, we introduced artificial memory leak
defects to a component of the popular big data computing
framework HADOOP.

Moreover, the artificial defects stand out from statistical
noise due to our ranking strategy. What we consider noise
during our investigation actually are suspicions for which we
did not determine whether they point to true memory leak de-
fects or not. The absolute ranks of the known artificial defects



are below rank 20 in the majority of the cases throughout all
the experiments.

In future work explorative studies need to verify our results
in real world software development processes.

We also plan to generalize the main idea of our approach
to any kind of leaking resource involved in software aging
(e.g. memory, open files, semaphores, sockets, etc.). For not
managed resources, static probing can be a valid equivalent to
our heap memory instrumentation of the java virtual machine.
The probing therefore should target any kind of allocate/open
and free/close operation within the source code.

To improve the performance of our approach instrumenta-
tion as well as the testing itself can be done change centric.
Since the instrumentation overhead depends on the amount
of objects monitored, we can decrease this overhead by
monitoring objects only if they are relevant to the source code
change.
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