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Abstract—Software aging (i.e. progressive performance degra-
dation of long-running software systems) is difficult to detect due
to the long latency until it manifests during program execution.
Fast and accurate detection of aging is important for eliminating
the underlying defects already during software development and
testing. Also in a deployment scenario, aging detection is needed
to plan mitigation methods like software rejuvenation. The goal
of this paper is to evaluate whether the Mann-Kendall test is an
effective approach for detecting software aging from traces of
computer system metrics. This technique tests for existence of
monotonic trends in time series, and studies of software aging
often consider existence of trends in certain metrics as indication
of software aging. Through an experimental study we show that
the Mann-Kendall test is highly vulnerable to creating false
positives in context of aging detection. By increasing the amount
of data considered in the test, the false positive rate can be
reduced; however, time to detect aging increases considerably.
Our findings indicate that aging detection using the Mann-
Kendall test alone is in general unreliable, or may require long
measurement times.

Keywords—Software Aging, Trend detection, Mann-Kendall
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I. INTRODUCTION

Software aging and rejuvenation research field aims to
understand the phenomenology of software aging and develop
effective countermeasures such as software rejuvenation. At
the base of this process, a major requirement is the accurate
detection of software aging effects. The variety and complex
nature of software aging sources, make the correct detection
of their effects a real challenge. Despite the importance of
accurate aging detection, we observe a lack of preliminary
studies evaluating the effectiveness of techniques used for this
purpose.

Surveying the literature reveals that a common approach
adopted in previous studies is based on the following general
two steps. First, selected computer system metrics (e.g., free or
used memory), which are assumed to capture aging effects, are
monitored under controlled workload conditions. Next, based
on the collected data set and supporting assumptions (e.g.,
aging is present if memory usage increase monotonically under
constant workload), a statistical technique is used to detect
trends that are considered as a sign of software aging. We
highlight two aspects in applying this approach.

First, we observe that the monitored system variables are
not always selected taking into account the specifics of the
trend test used. This is a considerable risk, given that every

trend analysis technique makes assumptions that need to be
met; if assumptions are violated, test results can be erroneous.
Specifically, in the presence of serial correlation, we know
from the literature that many trend detection techniques can
be estimated less accurately, which means the larger the
correlation, the larger the uncertainty [1], [2]. Note that
different system variables may demonstrate varying levels
of autocorrelation in their time series. Hence, it is possible
to conclude that not all system variables will provide time
series with the necessary properties required by all trend tests,
making both decisions strongly dependent of each other.

Second, the lack of theoretical or experimental validation
of considered supporting assumptions. For example, several
combinations of events not related to software aging may
promote a monotonic increase of system memory usage under
constant workload. In [3] an example of such situation in a
real system is provided for this specific case. If the supporting
aging assumptions are not verified, that is, grounded on a solid
theory or consistent observations from previous experiments,
the results can be misleading.

Based on the above findings from surveying the literature,
in this paper we present the results of a study regarding
the effectiveness of applying the Mann-Kendall trend test to
software aging detection. We selected this test for our study
given its broad citation in the software aging and rejuvenation
literature (e.g., [4], [5], [6], [7], [8]). We also demonstrate
how different system variables influence the quality of the test
results.

The rest of this paper is structured as follows. Section II
describes the problem context. Section III contains the descrip-
tion of our experimental plan, shows and discusses the results
of our study. Finally, we state our conclusions in Section IV.

II. MANN-KENDALL TEST APPLIED TO SOFTWARE AGING
DETECTION

A. Detecting aging via trend discovery

The Mann-Kendall test [9], [10] is a non-parametric test for
detection of monotonic trends in time series data. In context
of aging detection, such time series are traces of relevant
computer system metrics (so-called aging indicators) such as
Resident Set Size or Heap Usage (see Section III-A). As many
types of aging (e.g., memory leaks) manifest via increased
resource usage, positive (upward) slope of such indicators is
commonly interpreted as a sign of software aging. Hence,



experimental studies of software aging have applied the Mann-
Kendall test along with such indicators for the purpose of
aging detection.

Our main criticism with respect to this approach is the
observation that detected trend may not be caused by software
aging. For example, if an aging indicator has large variance
by nature, this test might produce multiple false alarms.
Another cause for existence of a trend in a metric might be
increased yet legitimate resource usage. This can have multiple
causes, e.g. specific application design patterns or interaction
of underlying system components, which may or may not be
dependent on the workload.

The variance of the aging indicator values might be mit-
igated by increasing the amount of data (i.e., length of
traces/time series) subjected to the test. To this aim, one
can measure the system for a prolonged amount of time
and apply tests repeatedly on all data since the beginning of
measurements. We also experimentally evaluate this alterna-
tive approach against using Mann-Kendall test on a moving
window of a maximal size. Results for both approaches are
contrasted in Section III.

B. Mann-Kendall test

The Mann-Kendall test [9], [10] verifies the null hypothesis,
H0, indicating that there is no trend over time, against the
alternative hypothesis, H1, presenting there is an upward or
a downward monotonic trend against zero slope. Let Y =
(ti, yi) be a time series data, where yi is the series value at
time point ti (i is an integer index). Given n consecutive data
points, the Mann-Kendall statistic S is computed by

S =

n−1∑
k=1

n∑
l=k+1

sgn (yl − yk) , (1)

where sgn denotes the signum function

sgn (x) =


−1, if x < 0

0, if x = 0

1, if x > 0.

(2)

The value of the S-statistic, computed via Equation (1),
is compared against a critical value with respect to a given
significance level α, where the critical values are drawn from
standard tables (see e.g., [11]).

According to Kendall [10], a Normal approximation test
could be used for data sets with more than ten values,
providing that there are not many ties in Y (i.e., we have
yl 6= yk for any l > k). A standardized test statistic Z is used
in this case and is compared to the Normal distribution.

C. Varying the amount of input data for S-statistic

While the Mann-Kendall test is robust against missing val-
ues, the amount n of data contributing to the S-statistic might
be significant for reducing the impact of “noise” (e.g. variance)
of aging indicators. We evaluate this aspect by contrasting the
two approaches explained below. Their respective performance
for trend detection is evaluated in Sections III-B and III-C.

1) Sliding window of limited size - MaxWinSize: The first
approach, namely MaxWinSize, uses the limited number of
consecutive values in time series data. In online monitoring
of aging indicators the number of measurements increases
over time. Here all the observed values are taken into account
for the test until this number is less than or equal to nmax.
When the number of observations exceeds nmax, the moving
window is used to sample the most recent nmax values.
Since the Mann-Kendall test is used with less than or equal
to 40 samples in [11], we also implement this approach
with nmax = 40. Note that we can switch to the normal
approximation test when we have enough sample points, but
here we focus on the Mann-Kendall test using sliding window
with limited number of samples.

2) Sliding window of unlimited size - UnlimWinSize: The
alternative approach, namely UnlimWinSize, removes the size
limitation in the first approach and uses all values from the
initial data point (i.e., beginning of the measurement). This
approach might be useful to detect the long time trend that is
not clearly observed in a short time period. In addition, the
accuracy of trend detection might be improved due to averag-
ing out “noise” in the system metric. However, the test might
become computationally more expensive than MaxWinSize
approach, since now each data value needs to be compared
to all subsequent data values.

III. EXPERIMENTAL STUDY AND EVALUATION

A. Experimental scenario

Our experiments focus on detecting software aging caused
by memory leaks. For the controlled experiments, we create
a synthetic workload generator (SWG) that emulates the
behavior of a general-purpose application by requesting and
releasing memory blocks, repeatedly, at random intervals (up
to 30 seconds). Figure 1 presents the pseudo-code of SWG.
The size of memory blocks is randomly sampled from a range
of values according to the selected workload intensity; low,
normal or high.

The SWG is programmed in C language, under Linux
OS as the operating system, and uses the standard functions
malloc()/ free() for dynamic memory allocation. We
injected a fault in free(), which leaks memory chunks in a
given percentage, p, such that p% of free() calls fail to
release the allocated memory. The leak rate, p, is also a
controlled variable in SWG. If p is greater than 0%, the amount
of memory consumption increases over time and it results in
a memory leak.

Choosing a relevant aging indicator is a key to robust
software aging detection. As discussed in previous works
(e.g., [12], [13]), Free Memory (FM) is a system-wide aging
indicator and hence its values might include some noises on
actual aging trend. Application specific indicators such as
Resident Set Size (RSS) and Heap Usage (HUS) are more
precise to trace the actual memory demand from a target
application. The values of FM and RSS are obtained by
monitoring the Linux /proc directory, while the value of HUS
is collected by instrumenting the memory allocator [14].
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Figure 2. Observed time series data of the aging indicators Free Memory (FM), Resident Set Size (RSS), and Heap Usage (HUS) under workload generated
by SWG for all combinations of leak rates (p = 0%, 0.5%, or 1.0%) and workload intensity (low, normal, or high). The scale for RSS and HUS is on the
left side of each chart, while the scale of FM is shown on the right side.

SWG (p, w, th)
p: percentage of leak
w: workload type
st: thread status
th: rate of thread creation
rt: run time of application
loop

st = thread_create ( Load(p, w) );
if (st != ZERO) then break;
if (th == CONSTANT) then

sleeps for 500000 microseconds;
if (th == VARYING) then

if (rt ≤ 30min.) then
sleeps for 500000 microseconds;

else if (rt ≤ 60min.) then
sleeps for 250000 microseconds;

else if (rt ≤ 90min.) then
sleeps for 166666 microseconds;
if (rt == 90min.) then rt = 0;

Function Load (p, w)
t: sleep time in seconds
k: leak activation factor
c: allocated memory address
t = random (1..30);
if (w == LOW) then

c = malloc (32 * random (1..16));
if (w == NORMAL) then

c = malloc (512 * random (1..55));
if (w == HIGH) then

c = malloc (1024 * random (1..200));
if (c == NULL) then thread_exit;
for each position in c

c[position] = 0;
sleeps for t seconds;
k = random(1..100);
if ( (p == 0.0) or

(k ≤ (100 - p)) ) then
free (c);

thread_exit;

Figure 1. Implementation of the synthetic workload generator (SWG)

By changing the leak rate (0%, 0.5% or 1.0%) and workload
intensity (low, normal or high), we obtained a set of time
series data for FM, RSS, and HUS, shown in Figure 2. In
each experiment, the values of aging indicators are collected
about every nine seconds and we use the data observed until
5000 seconds after the start of the software execution. The FM
values decrease over time regardless of the leak rate. On the
other hand, the values of RSS and HUS gradually increase for
leak cases (i.e. p = 0.5% or p = 1.0%).

B. Results for MaxWinSize

First we evaluate the Mann-Kendall test with inputs from
moving windows of maximum size 40 (i.e. MaxWinSize-
approach, see Section II-C). The results are summarized in
Figure 3. Plotted dot at a specific time point shows that the
Mann-Kendall test has confirmed the trend existence (i.e. H0

is rejected) with a confidence level of 95%. In every chart,
results for each of the aging indicators (FM, RSS, and HUS)
are plotted. All combinations of leak rates (p = 0%, 0.5% and
1.0%) and workload intensities (low, normal, high) are shown.

For the aging indicator FM (at the topmost of the charts),
trends are detected almost all the time, regardless of leak rates
and workload intensities. As a result, we conclude that FM is
considered to be hardly suitable for aging detection using the
MaxWinSize-approach.

For the non-leak case (p = 0%), trend detection is less
frequent in the cases of RSS and HUS than the case of
FM, although there are still some false alarms. The workload
intensities also affect the amount of false alarms as higher
workloads have more false alarms in both RSS and HUS. HUS
produces less false alarms when compared with RSS, hence
HUS is more robust to false alarms of memory-related aging.

For the leak cases (p = 0.5% and p = 1.0%), the test should
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Figure 3. Time charts plotting the aging detection time points for MaxWinSize-approach; a plotted dot shows that the Mann-Kendall test has confirmed
trend at this time point (plotted separately for FM, RSS, and HUS)

reject the null hypothesis as early as possible. However, both
RSS and HUS cause a lot of false negatives (i.e., no trend
detection), especially in case p = 0.5%. The amount of false
negatives is reduced for p = 1.0%, but still it is quite likely
that no leak is indicated, even after the measurement lasts for
more than 3000 seconds. For low and normal workloads, HUS
has lesser false negatives than RSS. The difference between
HUS and RSS becomes blurred for high workload cases.

We observe that if the aging rate is constant, the trend
detection performance of Mann-Kendall test does not improve
with longer measurement duration. This can be attributed to
the fact that in the MaxWinSize-approach the tests consider
only a small fragment of recent values of the aging indicator,
and the local profile of aging indicators does not evolve over
time.

C. Results for UnlimWinSize
Next, we apply the Mann-Kendall test combined with

UnlimWinSize-approach (i.e., test input is all available data
since beginning of measurement, see Section II-C) to the
same data set. The results are shown in Figure 4 (presentation
conventions are the same as in Figure 3).

Also in this case FM is not useful to distinguish leak cases
from the non-leak case, since the trend is detected almost
all the time. Results for HUS in cases of low and normal
workloads are satisfactory. The tests are reliable after 2000
seconds, as they can distinguish the leak cases from the non-
leak case accurately. For high workload case, however, the
test using HUS indicates many false alarms (i.e., for p = 0%)
after about 3000 seconds. Except for this specific scenario,
the combination of HUS with the UnlimWinSize-approach
achieves good performance of aging detection.

RSS as an aging indicator can also detect the trend with
high confidence in normal and high workload cases. In high

workload, however, it faces many false alarms in the non-leak
case. Moreover, it almost completely fails to detect the trend
in low workload case with leak rate p = 0.5%.

D. Comparative analysis

To evaluate the performance of aging indicators for software
aging detection, here we focus on the results of RSS and HUS,
comparing the sensitivity and specificity of the experimental
results. Sensitivity is defined as the fraction of true positives
in cases of a true leaking. Figure 5 shows these sensitivities
for the case p = 1.0%. The UnlimWinSize-approach achieves
higher sensitivity than the MaxWinSize-approach for all cases
(i.e., different workloads combined with different aging indi-
cators). The better result for the UnlimWinSize-approach can
be explained by the increased input size of the data to be
analyzed in the test.

On the other hand, specificity is defined as the fraction of
true negatives in cases of no leaking. Figure 6 summarizes the
results for both approaches (MaxWinSize vs. UnlimWinSize).
Obviously there are no significant differences between the two
approaches, only in selected cases MaxWinSize-approach is
better (higher specificity).

However, if we take into consideration Figure 3 and Fig-
ure 4, we see that most of false positives appears only in
an earlier phase of the experiments using the UnlimWinSize-
approach (especially in low and normal workloads cases).
We conclude that the UnlimWinSize-approach becomes more
stable with longer runtime of measurements, i.e. its ratio of
false positives might be reduced over time.

E. Lessons learned

As a brief summary of this section, we list the lessons
learned from this study.



Figure 4. Time charts plotting the aging detection time point for UnlimWinSize-approach; a plotted dot shows that the Mann-Kendall test has confirmed
trend at this time point (plotted separately for FM, RSS, and HUS)

Figure 5. Comparison of MaxWinSize-approach vs. UnlimWinSize-approach
by sensitivity (leak rate p = 1.0%)

First, we compare the appropriateness of aging indicators.
As observed in the results in the both approaches, the test
using FM cannot distinguish the leak cases from the non-leak
case. The detection performance is significantly improved by
using RSS or HUS. The difference between these two metrics
is not large. In detail, RSS has a slightly lower sensitivity and
specificity, but this is also case-dependent.

The Mann-Kendall test with moving window for limiting the
number of samples (MaxWinSize-approach) is not a reliable
technique for aging detection without knowledge about the
appropriate window size. In our experiments with 40 samples
as a windows size, even with RSS or HUS used as aging
indicator, the MaxWinSize-approach produces lot of false
alarms in the non-leak case and false negatives in the leak
cases. While the detection performance can be improved by
increasing the window size, it is not a trivial issue to determine

Figure 6. Specificity of MaxWinSize-approach vs. UnlimWinSize-approach
(no aging, i.e. leak rate p = 0%)

an appropriate window size. The primary reason is that the
optimal size depends on various factors including the type
of software aging, monitoring interval, aging indicator, and
application workloads.

The Mann-Kendall test without any limitation of sample
points (UnlimWinSize-approach) is more suitable for aging
detection, but it needs more data to achieve high confidence
and it depends on the quality of the used aging indicators.
As the number of samples increases, the false alarms and
false negatives are reduced. To distinguish the leak case from
the non-leak case, sufficiently long period of observation is
required.

Our experimental results clarify that applying trend tests
alone is not enough to have accurate aging detection. Thus,
in order to consider all details involved, we conclude that it
is necessary to follow a comprehensive protocol for aging



detection. This protocol should provide clear procedures to
answer questions such as:

• How to calculate the sample size with respect to the
selected aging indicators and trend test technique?

• Which trend test is more appropriate for a given class of
aging indicators?

• How to compute the risk of false-positives or false-
negatives occurrences?

These are among others necessary questions to help the
experimenter to conduct a more educated and reliable decision
making.

IV. CONCLUSION

In this paper we studied the effectiveness of the Mann-
Kendall tests applied to software aging detection as it has been
used in previous works. We showed through an experimental
study that the Mann-Kendall test suffers high rates of false
positives, commonly indicating software aging even where
there is no aging. This can be explained by the fact that
variability (or “noise”) of some underlying system metrics
(aging indicators) creates short-term trends which are detected
by the test.

To mitigate the latter effect, we contrasted the results of
applying Mann-Kendall test to time series data from a moving
window of maximum size 40 (MaxWinSize-approach) versus
applying this test to all data since beginning of measurement
until the current time point (UnlimWinSize-approach). Indeed,
the UnlimWinSize-approach is more accurate and produces
- in most cases - less false positives after a certain amount
of metric data is available (in our case, after about 60% of
the complete trace data). Thus, there is a trade-off of the
UnlimWinSize-approach between running time and accuracy.
This limits its utility for detecting aging during standardized
software testing as suggested in [15], [16].

Our study has also uncovered that the choice of underlying
system metrics as aging indicators has significant impacts on
the aging detection capability. For example, the Free Memory
metric turned to be useless (in our experimental setting) as it
exhibits strong trends (see Figure 2, top row) and so always
indicates presence of aging. On the other hand, the metrics
Resident Set Size and Heap Usage turned out to be more
useful.

Our future work will refine these results in several di-
rections. We will broaden the study including other system
metrics and experimental environment. Further explorations
will consider the confidence in trend presence, not only a
binary trend confirmation. Finally, we will further study the
efficiency of aging detection by version comparison method
[15].
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