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ABSTRACT

Identifying approximately identical strings is key for many
data cleaning and data integration processes, including sim-
ilarity join and record matching. The accuracy of such tasks
crucially depends on appropriate choices of string similarity
measures and thresholds for the particular dataset. Manual
selection of similarity measures and thresholds is infeasible.
Other approaches rely on the existence of adequate historic
ground-truth or massive manual effort.
To address this problem, we propose an Active Learning al-
gorithm which selects a best performing similarity measure
in a given set while optimizing a decision threshold. Active
Learning minimizes the number of user queries needed to
arrive at an appropriate classifier. Queries require only the
label match/no match, which end users can easily provide
in their domain. Evaluation on well-known string match-
ing benchmark data sets shows that our approach achieves
highly accurate results with a small amount of manual la-
beling required.

Categories and Subject Descriptors

H.2.m [Database Management]: Miscellaneous—Data
cleaning
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1. INTRODUCTION
Data integration and -cleaning are fields with longstand-

ing importance, that still have space for improvement [19].
Many of the tasks in those fields rely on string similar-
ity measures, sometimes also a threshold that allows string
matching. These include record matching [11], similarity
join [21] and schema matching [17].
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One immediate application of approximate string matching
is similarity join. It is the simple form of record match-
ing, where the matching depends only on one key attribute.
Differently from a simple join operation, equivalent entities
from both databases may only have similar values in this key
attribute. Specification of a similarity measure and thresh-
old define a solution to the similarity join problem. It can
then be reduced to an algorithmic problem, that can be ef-
ficiently solved, depending on the similarity measure [21].
Record matching relies on similarity measures to compute
similarity values on attribute level [11]. In the Fellegi-Sunter
model, binary comparison vectors are based on similarity
measures and thresholds for the involved attributes, that
need to be specified. In many other popular approaches
similarity measures need to be specified, while thresholds for
these functions themselves are not relevant. E.g., in SVM-
based approaches, similarity values of several attributes are
combined to a similarity vector. Then, a decision hyperplane
is learned from training data. In decision tree based ap-
proaches, several thresholds are learned to constitute predi-
cates in logical rules. These thresholds may be inconsistent
for the same attribute and similarity measure across differ-
ent predicates used in a tree.
Bleiholder et al. point out that the effectiveness of the record
matching step in data integration is mostly affected by the
quality of the similarity measure and the choice of a simi-
larity threshold [5]. Figure 1 illustrates that the choice of
a similarity measure can make a huge difference. Here, the
measure TagLink equipped with a suitable threshold can
match pairs of strings perfectly, while MongeElkan will pro-
duce many errors with any threshold.
In [11], a large scale comparison of frameworks for record
matching is done. The authors find that supervised match-
ing approaches require less configuration effort and knowl-
edge than others, but aspects like the choice of similarity
measures still have to be determined manually.
In this paper we study how to find a suitable similarity
measure from a given pool and optimize a corresponding
threshold semi-automatically. We propose an Active Learn-
ing approach to this problem, in order to minimize human
input. The user is iteratively queried for the ground-truth,
i.e., whether a pair of strings is equivalent or not. A stop-
ping criterion suggests that a sufficiently accurate choice can
be done and will terminate this loop. It will return the cho-
sen similarity measure along with an appropriately tuned
threshold as the final output.
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Figure 3: String pairs qj are aligned according to their similarity value w.r.t to some similarity measure si
(similarity values are not shown). Vertical lines indicate possible thresholds, labeled with their respective
empirical F-measure. The right side of the optimal threshold is highlighted to indicate pairs that are predicted
to be matches, the white area (on the left side) non-matches. Diamonds (red) indicate actual matches and
squares (blue) indicate actual non-matches. Pairs without revealed labels are not shown for clarity.
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Figure 4: Maximum F1-score values for a measure si
may be achieved by multiple candidate thresholds

tor defined by Equation (1) for si and a fixed t. We compute
the empirical F-measure of p, denoted as F1(Qm, p), based
on the known ground-truth for Qm = {q1, . . . , qm}. Among
all candidate thresholds for si, we consider only those with
the highest empirical F-measure. From these best threshold
candidates we select only one as a threshold tm,i as described
in Section 3.1.2.
The candidate thresholds for si are found as follows. We
first compute the values si(q1), . . . , si(qm), that intersect the
real number line in at most m+ 1 intervals. The candidate
thresholds are then the arithmetic means of each (closed)
interval (and additionally the minimal value si and the max-
imal value plus a small constant si+ǫ). Note that any point
within one interval yields the same empirical F-measure for
the corresponding candidate predictor.
Figure 3 illustrates this. There are 11 labeled pairs q1, . . . , q11
that are aligned in a linear ordering, according to their sim-
ilarity value as measured by si (increasing from left to right,
not shown). The candidates for a new threshold t11,i for
similarity measure si are the “middles” of each of the 12
intervals defined by si(q1), . . . , si(q11). The vertical lines
indicate these candidate thresholds; the corresponding em-
pirical F-measures are shown in the text labels.
The interval defined by si(q1) and si(q6) gives rise to thresh-
olds with empirical F-measure of 0.8. This is the best value,
and so we use as a threshold tm,i for si the middle of this
interval. All string pairs q with si(q) ≥ tm,i are now clas-
sified by the resulting prediction function p11,i as matches
(shaded or red area). Obviously, this prediction function
errs on some of the queried pairs, namely q3 (false negative)
and q7 (false positive).

3.1.2 Ranking of candidate predictors

There are two types of ambiguity when selecting p∗m:
(i) for each measure si several candidate thresholds might
lead to the same empirical F-measure, and (ii) after all n
thresholds are fixed, several predictors pm,i(q) (i = 1, . . . , n)
might achieve the highest value F ∗

pred(m) of the empirical F-
measure.
Ambiguities of type (i) are illustrated in Figures 3 (thresh-
olds of the same interval are equivalent) and 4 (there may

even be different equivalent intervals). We resolve those by
selecting as the threshold tm,i for si the middle of the“right-
most” interval (i.e., containing the highest similarity values)
among all these empirically optimal choices (e.g., between
q1 and q2 in Figure 4). This choice has little impact on per-
formance of the algorithm.
Ambiguity in case (ii) occurs since many predictors can have
the same F-measure in a given iteration. As shown in the
evaluation (Section 4), this becomes significantly less pro-
nounced in later iterations. We devise here a simple sec-
ondary heuristic ranking to pick the best from these highest
scoring predictors.
For each candidate predictor pm,i we inspect the interval
containing the selected threshold for pm,i: the lower the
number of pairs with unrevealed labels in that interval, the
higher the secondary ranking for the predictor. Our heuris-
tic intuition is that the spread of these noisy pairs are ex-
pected to be more concentrated in good performing hypothe-
ses, which leave few intermediate pairs unqueried.

3.2 Aggregated Prediction Function
In the following, we introduce an aggregated prediction

function pm that is computed in each iteration m. This
function pm is required by the query strategy described in
Section 3.3. We describe how this is done in Sections 3.2.1
and 3.2.2. In Section 3.3, we explain how we define the most
uncertain pair based on p.
In this paper, we use the term hypothesis as defined in [18].
A hypothesis is a classifier (or a configuration that is suffi-
cient to identify one), that explains the data by generaliz-
ing the ground-truth. In our case, a hypothesis h = (s, t)
is determined by a specific similarity measure s from S =
{s1, . . . , sn} and a corresponding threshold t ∈ R. Con-
sequently, the hypothesis space is H = S × R. Restating
Equation (1), each hypothesis h = (s, t) is assigned a pre-
diction function defined by ph(q) = 1 :⇔ s(q) ≥ t. We will
write hm,i as shorthand for (si, tm,i) and pm,i for phm,i

. We
also define as Fpred(m, i) := F1{Qm, pm,i} the empirical F1-
score for hypothesis hm,i w.r.t. observed labels only (recall
that Qm is the set of already labeled string pairs).

3.2.1 Clustering of Similarity Measures

We account for redundancy among similarity measures by
clustering measures that are mutually similar. It is impor-
tant to notice about the hypotheses that they are not in-
dependent of one another. Some similarity measures may
not even be defined similarly, but produce a very highly
correlated ordering of pairs. In order to combine their pre-
dictions in a meaningful way, it is important to account for
this redundancy. Otherwise some similarity measures might
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Figure 5: Structure of the aggregated prediction
function pm (a fictional example with n = 8)

Symbol Definition

Fpred(m, i) :=
F1{Qm, pm,i}

empirical F1; the F1 score for
hm,i w.r.t. observed labels only

C1, . . . , Ck ⊆ S k clusters of similarity measures
pm,i : Q → {0, 1} prediction function of

hypothesis hm,i

p
Cj
m : Q → [0, 1] (intermediate) prediction function

associated to cluster Cj

pm : Q → [0, 1] aggregated prediction function

wm,i, w
Cj
m weights used in the aggregation

ptargetm := 1− rm target prediction value

Table 2: Symbols used for the query strategy

be overrepresented and dominate the voting.
We represent similarity measures by the vector of similar-
ity values, indexed by all considered string pairs. The re-
dundancy among two similarity measures is then computed
by their mutual Pearson correlation coefficient. Calculat-
ing the matrix of correlations between all pairs of similarity
measures yields a weighted undirected graph. The nodes
correspond to similarity measures and the weighted edges
to the pairwise Pearson correlation. Clusters C1, . . . , Ck in
this graph correspond to sets of mutually similar similarity
measures. We apply a graph clustering algorithm [16] that
maximizes the so-called modularity of a graph clustering to
achieve this. We used the implementation Linloglayout [1].
The clustering is computed once in the beginning and re-
mains the same over the course of all iterations. In our
experiments with a set of 24 similarity measures, k ranged
from 2 to 5 and the cluster sizes from 1 to 12.

3.2.2 Aggregating

In the following, we explain how we combine in each itera-
tion m the individual prediction functions pm,i to an overall
prediction function pm.
We do this in two steps, which we illustrate in Figure 5.
The first step combines the prediction functions of hypothe-
ses whose similarity measures are in the same cluster C to
an intermediate prediction function pCm. The second step
combines all predictions functions pCm to the overall predic-
tion function pm.
We estimate the predictive power of a prediction function
pm,i with the F-measure on the seen labels. We assign
weights wm,i = Fpred(m, i) to favour promising predictions
over poor predictions. The prediction functions pCm are de-
fined as follows:

pCm(q) :=





∑

si∈C

wm,i





−1

·





∑

si∈C

pm,i(q) · wm,i





These prediction functions are then combined to the overall
prediction function pm:

pm(q) :=

(

k
∑

j=1

w
Cj
m

)−1

·

(

k
∑

j=1

p
Cj
m (q) · w

Cj
m

)

,

where w
Cj
m = 1

|C|

∑

si∈C

Fpred(m, i).

The weights wC
m for the functions pCm reflect how promising

the hypotheses whose similarity measures belong to cluster
C are on average.
The expression for pm(q) can be expanded and then simpli-
fied to the following:

pm(q) =





k
∑

j=1

∑

si∈Cj

1

|Cj |
wm,i





−1

·

(

n
∑

i=1

pm,i(q) · wm,i

)

3.3 Query Strategy
In terms of [18], the strategy can be described as an in-

stance of uncertainty sampling. That is, the paradigm that
is based on a prediction function for unseen labels and as-
signs a measure of certainty to each prediction. The basic
insight is that there is little value in querying the instances
whose labels can be predicted with high certainty. Con-
versely, the most gain for the learning progress can be ex-
pected from querying the most uncertain instances.
The prediction function pm : Q → [0, 1] calculates a real
value for each string pair. We now define our notion of un-
certainty based on this function.
A clear prediction of pm(q) = 1.0 implies that each hy-
pothesis predicts the query to be a match. Conversely,
pm(q) = 0.0 means that each hypothesis predicts a non-
match.
When the overall prediction pm(q) is equal to 0.5, the label
of q is highly uncertain. This prediction can only occur if
sufficiently highly-weighted or at least many hypotheses pre-
dict either label. This means that no matter which label will
turn out to be true, a significant part of the hypotheses will
see its prediction disproved. I.e., significant in the sense of
a combination of the individual confidences. The first idea
is hence to define the next query as

argminq∈Q\Qm−1
|0.5− pm(q)|

Yet, to achieve fast convergence, we have to correct this
notion of uncertainty to account for the overall prediction
pm(q) which can be biased in early iterations. We will there-
fore replace the value 0.5 by a target prediction, denoted by
ptargetm ∈ [0, 1].
Since the thresholds have to be set to some initial setting,
they are bound to be inappropriate in the beginning. As-
sume that the thresholds in iteration m are such that the
functions pm,i are collectively biased towards predicting mat-
ches. That is, each function pm,i has a high false positive
rate w.r.t. the whole ground-truth. Then the set of pairs
that get a committee prediction close to 0.5 will consist of
more non-matches than matches. So the label of such a pair
is actually not most uncertain, when the hypotheses are col-
lectively biased. The target prediction ptargetm for iteration
m must be higher than 0.5 if the hypotheses are generally
biased towards predicting matches. An analogous argument
applies in the reverse situation.



We measure the current bias of the committee by calculat-
ing the ratio of match labels among the revealed labels. We
define the target prediction ptargetm as the complement, or
ratio of non-match labels among the seen labels:

ptargetm := 1− rm =
1

m− 1

m−1
∑

n=1

1− l(qn)

It will yield a value higher than 0.5, if the committee was
biased towards matches in the past, as desired. This way the
target prediction self-regulates until the thresholds adjust to
the respective regions where the labels are truly uncertain.
The next query is hence defined as follows:

qm := argminq∈Q\Qm−1

∣

∣ptargetm − pm(q)
∣

∣ .

Note that the query qm minimizing the expression above
may not be uniquely defined. Therefore, we devised a sec-
ondary ranking of the pairs to further distinguish the pairs.
This ensures that informative queries are done even when
the prediction pm is not (yet) well prepared to decide this.
We measure the variance of ranks w.r.t. the different linear
orderings that the similarity measures give. It can be calcu-
lated by unsupervised data. This is defined as follows.
For each pair, calculate the rank that it is assigned by each
similarity measure s. That is, the pair q with the highest
similarity value s(q) will get rank 0 w.r.t. s, the pair with
the second highest will get rank 1, and so on. Then calculate
for each pair the variance with respect to its similarity rank
across all similarity measures. The higher this variance is,
the higher the pair be will appear in the secondary ranking
for querying.

3.4 Stopping Criterion
In an approach using Active Learning it is useful to have a

stopping criterion, i.e., a function indicating when the query-
ing process can be terminated. It is important not to stop
too early, when the solution is still improving. On the other
hand, the algorithm should not issue additional queries after
the solution is stable.
The stopping criterion can be designed independently of the
query strategy and the ranking of candidate predictors. We
tried a lot of other intuitive heuristics, but none seemed to
be more successful than the one we will introduce now. The
main problem in devising a stopping criterion is the scarcity
of information that is inherent to Active Learning.
A trivial stopping criterion is a threshold on the number
of queried labels. However, we noticed that the algorithm
“progresses” at different speeds for different data sets. We
measured the progress of the algorithm in terms of the true
F-measure Ftrue(m) := F (Q, p∗m) of the currently best rank-
ing prediction function p∗m (for the ranking criterion, refer
to Section 3.1.2). The true F-measure uses all hidden labels
and can hence not be used by the algorithm.
However, (at least for the considered data sets) another mea-
sure seems to capture this progress well and does not require
the hidden ground-truth. This measure is the total number
of changes in thresholds that have occurred since the begin-
ning of the algorithm:

TCm :=
n
∑

i=1

m−1
∑

j=0

1− δ(tj,i, tj+1,i),

where δ is equal to 1 if its arguments are equal and 0 oth-
erwise. A stopping criterion can be devised as a condition

that TCm has exceeded a certain threshold. In Section 4.3
we compare different thresholds for TCm in context of our
data sets.

4. EVALUATION
In this section we evaluate our approach under several

aspects. These include user labeling effort vs. accuracy
(Section 4.3), convergence behavior (Section 4.4), impact of
the stopping criterion (Section 4.5), and other aspects, such
as impact of the predictor ranking (Section 4.6).

4.1 Experimental Setup

Data Sets. We use for the evaluation 17 data sets summa-
rized in Table 3. Four data sets are created by us (marked
with + in Table 3). To obtain the ground-truth we pursued
a similar approach as [8], with a final manual review. We
have also found and corrected errors in the ground-truth in
3 existing data sets (business, animal, and bird2 ). Details of
these errors as well as all data sets can be downloaded from
http://pvs.ifi.uni-heidelberg.de/team/lb/.

Similarity measures. In our experiments we use n = 24
similarity measures s1, . . . , s24 taken from the library Sec-
ondString [2]. Some of these measures depend only on the
two input strings, while others take into account frequencies
of substrings across the whole data set. Our approach treats
the similarity measures as black boxes.

Other parameters. Our experiments have shown that sev-
eral parameters described in Section 3 do not have a notable
impact on the behaviour of the algorithm. These include
initial values of thresholds, and selecting the actual thresh-
old value among several candidates with identical F1-scores.
Therefore, we report only the results obtained via imple-
mentation choices described above.

4.2 Evaluation metrics
We use in the following some symbols defined in Table 1.

Recall that for a fixed iteration number m, the (intermedi-
ate) result of the learning process is the best predictor p∗m
(if m is the final iteration, p∗m is the final result of the pro-
cess). The following two metrics evaluate the convergence
and accuracy of p∗m. The true F1, denoted as Ftrue(m), is
the F1-score of the best predictor p∗m taking into account
the labels of all string pairs in Q (i.e., the complete ground-
truth):

Ftrue(m) = F1(Q, p∗m).

This metric estimates the generalization capability of p∗m
since it takes into account all labels of the data set, not only
the queried ones.
The maximal F1 (symbol Fmax) is the F1-score of the best
possible prediction function across the hypothesis spaceH =
S × R w.r.t. the whole ground-truth, i.e.,

Fmax = max
h∈H

F1(Q, ph).

The match ratio in iteration m (denoted rm) is the ratio of
match labels versus non-match labels among the observed
pairs. Finally, TCm is the total number of threshold changes,
which is the cumulative number of times when a threshold
has changed for any similarity measure in any iteration.



Dataset name domain src 1 src 2
Original Reduced

pairs match pairs match matches
/ pairs

string matching problems
bird3[8] common+scientific animal names 23 15 345 15 25 14 56.00%

USPresidents+ personal names 43 43 1,849 43 173 43 24.86%
ucdFolks[14] personal names 45 45 2,025 45 184 45 24.46%

DBconferences+ names of database conferences 54 54 2,963 54 2441 54 2.21%
bird1[8] common+scientific animal names 317 20 6,340 19 672 19 2.83%

faoMembers+ country names 194 194 37,636 194 2,633 192 7.29%
bird2[8]* common animal names 914 68 62,152 64 4,089 64 1.57%
game[8] names of computer games 798 105 83,790 41 4,276 41 0.96%
bird4[8] common+scientific animal names 564 155 87,420 155 11,297 155 1.37%
park[8] names of (national) parks 393 258 101,394 252 6,767 250 3.69%
census[9] synthetic peronal names+addresses 449 392 176,008 329 18,438 326 1.77%

fodorZagrat[20] restaurant names+addr+phone+style 532 331 176,092 114 73,657 112 0.15%

nobelLaureates+ personal names 839 839 703,921 839 27,011 831 3.08%
business[8]* company names 1162 962 1,117,844 310 502,316 309 0.06%
animal[8]* common animal names 4719 817 3,855,423 178 93,661 175 0.19%

string deduplication problems (single source)
UVA[14] institute names 116 6,670 280 2,932 272 9.28%

coraATDV[12] publication references 956 456,490 7,766 453,987 7,766 1.71%

Table 3: Benchmark data sets (ordered by number of pairs) for string matching (upper part) and deduplication
problems (lower part). Column “Reduced” shows effects of the indexing step. * indicates that ground-truth
has been corrected; italic number of matches means false negatives due to indexing. +indicates new data
sets. Summed entries in column “type” indicate concatenated strings of different types.
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higher number of iterations.

4.3 User effort and predictor accuracy
Table 4 reports results for all data sets after learning

prediction models with two different stopping criteria A:
TCm ≥ 75 and B: TCm ≥ 130. For criterion A, the average
number of queries (or iterations) is 7 and never exceeds 10,
which shows that the labeling effort for the user is very low.
At the same time, the ratios Ftrue/Fmax of solution quality
(i.e. Ftrue) to maximum achievable quality (Fmax, specific to
a data set) are high. This indicates that the final matching
prediction functions have been learned well.
In case of stopping criterion B, the ratios Ftrue/Fmax are in
general higher, but not to a large degree. Also here the aver-
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dictor (Ftrue(m)) to Fmax vs. total number of thresh-
old changes TCm (each box/whisker plot shows dis-
tribution over all data sets).

age number of iterations until stop is relatively low (around
15) which implies an acceptable labeling effort. Summariz-
ing, we conclude that Active Learning performs very well,
and allows minimizing user effort while achieving accurate
prediction models.

4.4 Convergence behavior
Figure 8 gives more insight into convergence behavior of

some selected representative data sets. While animal and
business (top row) illustrate benign changes of Ftrue(m) (the



A: stop at TCm ≥ 75 B: stop at TCm ≥ 130

Data set Fmax final m s∗ t∗m Ftrue
Ftrue

Fmax

final m s∗ t∗m Ftrue
Ftrue

Fmax

bird3 1.000 5 L2 JW 0.923 1.000 100.00% 15 TL 0.598 1.000 100.00%
USPres. 0.953 6 ST 0.403 0.925 96.98% 14 TL 0.778 0.943 98.85%
ucdFolks 1.000 5 ASD 0.342 0.917 91.67% 12 TL 0.643 0.989 98.90%
DBconf. 0.874 8 ME 0.779 0.851 97.45% 14 ME 0.840 0.845 96.75%
bird1 0.947 7 TFIDF 0.513 0.947 100.00% 16 TL 0.766 0.944 99.69%

faoMembers 0.961 9 L2 L -0.300 0.958 99.70% 21 L2 ME 0.949 0.897 93.37%
bird2 0.944 7 JWT 0.982 0.918 97.25% 12 JC 0.633 0.929 98.42%
game 0.846 10 L2 JO 0.886 0.805 95.16% 20 L2 JO 0.927 0.827 97.70%
bird4 0.980 6 TL 0.615 0.951 96.96% 12 L2 JW 0.900 0.955 97.45%
park 0.970 7 SL 0.675 0.913 94.08% 15 ST 0.571 0.921 94.94%
census 0.899 6 A 0.609 0.665 73.94% 12 TL 0.816 0.817 90.80%

fodorZagrat 0.978 8 TL 0.751 0.959 98.09% 17 JWT 0.644 0.968 99.05%
nobelLaur. 0.989 7 JWT 0.399 0.790 79.93% 15 ST 0.443 0.882 89.21%
business 0.971 8 ASD 0.685 0.960 98.93% 16 ASD 0.663 0.964 99.30%
animal 0.926 8 M 0.495 0.891 96.24% 18 M 0.444 0.893 96.43%
UVA 0.907 7 JO 0.858 0.633 69.72% 13 TL 0.721 0.899 99.04%

coraATDV 0.800 6 ME 0.551 0.648 81.07% 15 L2 L -0.675 0.736 92.07%
average 7.06 92.29% 15.12 96.59%

Table 4: Results after model learning with stopping criteria A: TCm ≥ 75 and B: TCm ≥ 130. Final m is
the number of iterations, s∗ is the best final similarity measure, and t∗m the corresponding final threshold.
Ftrue/Fmax gives the ratio of solution quality (i.e. Ftrue) to maximum achievable quality (Fmax). Similar-
ity measures: L2 *=Level2*, JW=JaroWinkler, ST=SourcedTFIDF, ASD=AveragedStringDistanceLearner,
ME=MongeElkan, L=Levenstein, JWT=JaroWinklerTFIDF, JO=Jaro, TL=TagLink, SL=ScaledLevenstein,
M=Mixture, JC=Jaccard. Note that thresholds may be negative.

F1-score of the best predictor, specific to iteration number
m), UVA and nobelLaureates (bottom row) show less desir-
able behavior of Ftrue(m). We also note that in the first iter-
ations highest-ranked similarity measure changes frequently
(indicated by vertical lines), while after 7 iterations the mea-
sure stabilizes. This is less pronounced for the “bad” cases
UVA and nobelLaureates.
Figure 6 shows that the empirical F1-scores Fpred(m, i) de-
crease with growing iteration number m for all measures.
This can be attributed to the fact that the uncovered labels
come only from the “noisy” area that contains all hard-to-
separate pairs. This also explains why F ∗

pred(m) decreases
below the actual performance Ftrue(m). So, the empirical
F1-scores do not approximate the true performance, but are
sufficient to compare the quality of current predictors.

Note that the output prediction function p∗m is chosen
from the ph (with h ∈ H). The aggregated prediction func-
tion pm will not be output. It is only used to define the next
query to the user. In fact, pm performs significantly worse
than the individual predictor p∗m chosen in each time step by
the algorithm. Our experiments showed that it is very unsta-
ble for most data sets (it does not converge) and shows worse
F1-scores most of the time; often significantly. A reason is
that even a bad similarity measure si can achieve precision
of rm and recall of 1.0 by a small threshold (for rm = 0.3
this equals wm,i = Fpred(m, i) = 0.462). So pm may always
be somewhat influenced by inappropriate measures.

4.5 Stopping criterion
The choice of the stopping criterion determines the trade-

off between user labeling effort and accuracy. Figure 8 shows

that for animal and business the matching quality F ∗
pred(m)

increases rapidly in the first few iterations and remains vir-
tually unchanged after that. For UVA and nobelLaureates
more than 10 iterations are needed in order to achieve a
stable quality level (even not so in the case of UVA). This
refines the findings from Section 4.3: for some data sets, less
then 10 iterations are sufficient (i.e., stopping criterion A),
while others require more labeling effort. Thus, the choice
of a universal stopping criterion is hardly possible. Depend-
ing on the application, either low user effort (criterion A) or
potentially higher accuracy (criterion B) must be preferred.
Figure 9 shows on the right y-axis the values of TCm used in
our stopping criterion (i.e. cumulative number of threshold
changes over all measures in S). More conclusive is Figure 7:
we see that the variance of the true F1-scores over all data
sets decrease for TCm values above 75, suggesting this as a
potential threshold.

4.6 Other aspects
Figure 9 shows (on the left axis) the F1-score of the best

ranked predictor (line with crosses) among all predictors
with maximal empirical F1-scores in iteration m (shaded
area). It illustrates the use of a secondary heuristic ranking
explained in Section 3.1.2, especially when a lot of compet-
ing predictors (with the same best empirical F1-scores) exist
in the early iterations.
Figure 8 also shows that the match ratio rm is very balanced,
while tending towards lower values. Considering the skewed
label distribution (see Table 3), this constitutes a very bal-
anced sample. This indicates that the query strategy works
well in terms of selecting string pairs with informative labels.





to take part in a benchmark competition for text retrieval.
It is trained online on a stream of queries. They introduce
score-distributional threshold optimization, which uses a sta-
tistical model to estimate a threshold. The considered simi-
larity measure is TFIDF with some preprocessing (like stem-
ming and stop word removal). The approach works with
any quality metric that is a function of the contingency ta-
ble, like the F-measure. The paper outlines the straightfor-
ward empirical method to optimize thresholds w.r.t. a given
quality metric, that exhaustively considers all thresholds on
the present training data. The authors dismiss this sim-
ple approach, because of its drawbacks in their online prob-
lem setting. Most computations involved in their method
can be updated incrementally. Also, it is able to produce a
broad prediction for the threshold with only sparse super-
vised data. It is unclear, however, how score-distributional
threshold optimization performs on only a few samples, since
it is only evaluated in a very specific online setting. The ap-
proach is only evaluated on TFIDF and does not point out
any method to compare several similarity measures.
The authors of [10] use the straightforward empirical method
w.r.t. optimizing accuracy. Additionally, they formulate
a statistical model with a bivariate Gaussian distribution.
They show that this model captures the notion of an accu-
racy-optimal threshold well. Unfortunately, the evaluation
of the optimization is not conclusive. Only one data set
with artificial edit variations is used, and one similarity mea-
sure (Levenstein edit distance). The result suggests, that
eventually the threshold arrives in the optimal interval. In
the one experiment this happens close to 40 used samples.
One sample corresponds to a ranking list which requires 8
labels (relevant or irrelevant to the query). The authors
suggest to use clustering as an unsupervised method to ap-
proximate ground-truth to mitigate the labeling effort. The
evaluation does not measure how good the intermediately
approximated thresholds are, in terms of any quality met-
ric. The sampling method for documents and queries is not
described. Finally, a quality metric for similarity measures
is introduced (arithmetic mean of accuracy and the size of
the output interval of optimized thresholds). This metric
is evaluated on eight similarity measures. The results show
that this measure preserves the ranking by accuracy. Hence
the empirical method for threshold optimization can also be
used to compare similarity measures in terms of accuracy.

6. CONCLUSION
We have developed a novel method for finding a simi-

larity measure and an appropriate threshold that work well
specifically for given data, in order to solve the string match-
ing problem. It requires no existing ground-truth and can
be used by end-users. The experimental evaluation shows
that good results can be achieved with only very few itera-
tions. We propose two stopping criteria based on a notion
of progress. Their thresholds have been determined empir-
ically. The result of our proposed algorithm can directly
be used in important applications like similarity join, record
matching and schema matching.
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