
The Impact of Coverage on Bug Density in a Large
Industrial Software Project

Thomas Bach∗, Artur Andrzejak∗, Ralf Pannemans†, and David Lo‡
∗Heidelberg University, Germany

†SAP SE, Germany
‡Singapore Management University, Singapore

thomas.bach@stud.uni-heidelberg.de, artur.andrzejak@informatik.uni-heidelberg.de
ralf.pannemans@sap.com, davidlo@smu.edu.sg

Abstract—Measuring quality of test suites is one of
the major challenges of software testing. Code coverage
identifies tested and untested parts of code and is
frequently used to approximate test suite quality. Mul-
tiple previous studies have investigated the relationship
between coverage ratio and test suite quality, without
a clear consent in the results. In this work we study
whether covered code contains a smaller number of fu-
ture bugs than uncovered code (assuming appropriate
scaling). If this correlation holds and bug density is
lower in covered code, coverage can be regarded as a
meaningful metric to estimate the adequacy of testing.
To this end we analyse 16 000 internal bug reports and

bug-fixes of SAPHANA, a large industrial software pro-
ject. We found that the above-mentioned relationship
indeed holds, and is statistically significant. Contrary
to most previous works our study uses real bugs and
real bug-fixes. Furthermore, our data is derived from a
complex and large industrial project.

I. Introduction
Software testing is a crucial and widely deployed tool for

ensuring software quality. One of the practical challenges
for software testing is measuring the quality and effect-
iveness of test suites. Measures for adequacy of testing
are typically used to identify whether a software artefact
is not tested sufficiently well, and where improvement is
needed. They also play an important role to indicate that
a sufficient amount of testing has been done, and resource
costs for testing eventually surpass the expected savings
from reductions in the amount and impact of defects.
One of the most widely-used measures for adequacy of

testing is statement coverage. Its direct use is to identify
uncovered parts of code which potentially contain further
bugs, not caught by existing test code. The code coverage
(ratio), i.e. ratio of covered lines to all lines, is frequently
interpreted as a metric of test quality, with numerous
organisations using it to set testing requirements. On the
other hand, some studies question the very existence of
a relationship between coverage and test suite effective-
ness [1].
If a positive correlation between coverage ratio and

test suite effectiveness exists, we expect to find a smaller
number of future bug-fixes in the covered parts of code, see
Figure 1. This observation has been used by Ahmed et al.

[2] to design a simple schema to verify the benefits of cover-
age as a test quality measure. Essentially, they identify the
amount of bugs found in covered and not covered part of
code. If the coverage ratio is meaningless, then we expect
that future bugs are distributed uniformly over covered and
uncovered parts of the source code. However, if coverage
ratio is meaningful, then the percentage of all future bugs
found in the covered parts of the code should be smaller
than the coverage ratio. Figure 2 illustrates this binary
testedness approach.

While Ahmed et al. [2] use mutations as surrogates
for bugs, we use records of real bugs and their bug-fixes.
Another essential difference is that our data is collected
from a very large industrial application with high reliability
requirements. Our work improves the data collection pro-
cess and data evaluation by introducing multiple collection
points instead of using a single snapshot like the previous
study of Ahmed et al. [2]. This reduces the risk of losing
track of code changes over time, and increases the size of
the data set for more robust evaluation.
Our subject of study is SAP HANA, a large industrial

software system from SAP developed mostly in C and
C++ for more than 10 years. SAP HANA is a relational
database management system and the core product of
several applications offered by SAP SE [3], [4], [5].
Following the binary testedness approach, we investig-

ate in this work how many bugs occur in covered and
uncovered parts of the source code of SAP HANA. Our
findings show that indeed there were less bugs in the
covered parts of the source code than expected from a
uniform distribution. This effect is visible in 70 out of 72
time segments of our data, and is statistically significant for
the mean. This indicates that the case of our test subject,
increasing coverage ratio and enforcing high coverage goals
can reduce the amount of defects. In contrast to previous
studies, we use a large, real world software project, and
real bug data.

The structure of the remainder of the paper is as follows.
Section II describes our approach and data processing steps.
In Section III we discuss our findings and possible threats
to validity. Section IV presents the related work, and we
state conclusions in Section V.



Figure 1. Exemplary coverage and bug distributions. Scenario 1
describes a situation where coverage ratio is meaningless for future
code quality measured by the amount of bugs. Scenario 2 shows a
situation where coverage is meaningful.

Figure 2. The binary testedness approach from [2] separates the
source code in two (binary) groups and counts the number of bugs in
the covered and uncovered group. In this example, 170 bugs occurred
in the covered part of the source code, 24 in the uncovered part and
6 are undecided.

II. Approach
This section describes the binary testedness approach

from Ahmed et al. [2], introduces SAP HANA testing en-
vironment, and outlines our data collection and processing.

A. Binary Testedness Approach
The binary testedness approach from Ahmed et al. [2]

separates the source code in two (binary) groups: Covered
and uncovered parts of the source code. Based on this
separation at a given time T , all future bugs and the
corresponding bug-fixes after T are checked if they occur
in the covered or the uncovered group, see Figure 2. A
lower amount of bugs in covered parts (found covered
bugs) compared to coverage ratio times all bugs (expected
covered bugs) would indicate that coverage is meaningful.

Ahmed et al. use the GumTree Differencing Algorithm to
identify the position of the original source code elements at
time T for a bug-fixing commit after T , even if the state
of the elements changed between T and the bug-fixing
commit. For this purpose, GumTree utilizes an abstract
syntax tree [6], see Figure 3 (upper part).
Instead of using coverage data for a single point T in

history, our approach utilizes the data of multiple coverage
runs distributed from T until the last observed bug-fixing
commit. This subdivides the measurement period into
multiple, non-overlapping time segments. Figure 3 (lower
part) visualizes the concept and shows an example for the
accuracy improvements in terms of more robust mappings
between changed source code and coverage data.
Increasing the amount of coverage runs shortens the

time segments, and therefore reduces the likelihood of
intermediate conflicting commits between a coverage run
and a bug-fix. For this study, we found that 72 time
segments (roughly two coverage runs per week) ensured
a mismatch rate below 1 % for all file modifications. A
mismatch occurs if the original source code state of the bug-
fixing commit is not equal to the state of the coverage run.
The accuracy can be further improved up to a mismatch
rate of zero by shortening the time segments between test
runs at the cost of a higher resource investment.

B. Testing Environment of SAP HANA
SAP performs a range of quality assurance processes to

ensure the required quality of SAP HANA. This includes
extensive testing with over 100 000 programmatically ex-
ecuted software tests [7]. The tests within the coverage
profile have a cumulative runtime of over 250 hours. These
tests check various aspects from functionality up to soft-
ware performance and regressions.

SAP engineers use DynamoRIO to collect line based
coverage data on a regular basis. Line based coverage data
tells for each executable source code line if the line was
executed (‘hit’) or not (‘missed’). The coverage data is
then used to identify untested parts of the software. The
covered part of the source code contains all lines which were
executed by at least one test, whereas the uncovered part
contains lines which were not executed by any test. The
uncovered part could be tested by manual tests or other
test types without measured coverage, which is unknown
at this level of analysis.

SAP uses a bug tracking tool to maintain defect history.
For the purpose of this study, we classify defects by their
detection time into early detected and late detected defects.
Defects found before a change is merged into the source
code repository are classified as early. Defects found later
are classified as late. Early defects are detected, e.g., during
development, by peer reviews or by pre-commit test runs.
Late defects are detected, e.g., by extended continuous
automatic regression testing, by manual testing, by internal
usage of SAP HANA (‘self-hosting’), by automatic tools
e.g. fuzzy testing, or even by customer reports. This study



Figure 3. The GumTree approach used by Ahmed et al. [2] tracks the nodes of an abstract syntax tree (AST). This can reduce accuracy for
consecutive changes. For commit 3, change 1 is uncovered, deleted and inserted nodes are unknown and change 2 is covered, but it is in fact
unclear due to intermediate changes. Our approach can accurately map change 1, change 2 and the deletion from commit 3.

focuses on late defects, which tend to have a higher cost
impact [8] and better documentation compared to defects
during early local development. In the following, the term
bug is synonymous with late detected defects.
This classification of the terms early and late bugs is

a proprietary definition, which is different from common
terminology, e.g. ISTQB test levels [9]. The ISTQB clas-
sification of test levels is linked to the responsibilities
in a project. The distinction by responsibilities is not
always possible in our case project. E.g., one test suite can
contain component tests, integration tests, system tests,
and regression tests. Our classification focus on the time
of identification and distinguish between bugs that were
detected by the current set of programmatically executed
tests and bugs that were not detected by these set of tests.
This allows us to apply the binary testedness approach
from Ahmed et al. as described in Section II-A.

C. Data Collection and Processing

Our experiment set-up requires coverage data, bug data,
and a link between bugs and coverage. As described in
Section II-B, line based coverage data is collected regularly.
Each coverage-execution of a test suite creates a distinct
coverage data file, which is aggregated with all other
distinct coverage data files to a combined coverage data
file.
We collect bugs as described in Section II-B and we

assume that each entry in the bug tracking tool indicates
a bug. Each bug entry either contains a link to one
or multiple bug-fixing source code changes (‘bug-fixing
commit’), or the bug-fixing commit message contains the
id of the bug.

This allows us to identify related source code changes for
each bug and avoids the need to identify which commits
fix bugs, and which e.g. introduce new features [2].

D. Classifying Bug-Fixes by Coverage
For each bug, we must decide whether the corresponding

bug-fixing commit changes occur in covered parts of the
source code or in uncovered parts of the source code. The
decision for a git commit follows the decision graph shown
in Figure 4, which we explain in the following paragraphs.
The source code of SAP HANA is maintained in a git

version control system [10]. Each git commit corresponds
to incremental code changes as actually performed by the
developers (i.e., we are not considering the delta to some
fixed baseline).

A commit is considered covered if at least one chunk is
covered and we call it covered bug-fix. This implies that the
original behaviour of these covered chunks were executed
by at least one test, but the test did not detect the bug.We
consider at least one covered chunk as sufficient to classify
the commit as a covered bug-fix, because a single covered
chunk implies that the corresponding bug could have been
possibly detected by at least one test. This definition can
result in a larger set of covered bug-fixes than a manual
decision by experts, because our covered bug-fixes may not
contain covered parts of the source code which are relevant
to the bug.
Analogously, if none of the existing tests executed any

part of the original code of the bug-fixing commit, we call
it an uncovered bug-fix. We use a third category for unclear
cases and call a commit an undecided bug-fix if we cannot
use any of the two previous categories.
File additions, deletions and moves are ignored. If any

modification on file level occurs, we expect a change at any



Figure 4. The process of classifying a bug-fixing git commit as covered,
undecided, or uncovered (terms from Section II-D).

other point in the source code reflecting this modifications
(e.g. class instantiation, function usage). We only classify
this other change and ignore the file modification. There
are counterexamples to this explanation, but we did not
find any occurrence in practice. Additionally for file moves,
the frequency of file moves is less than 1 % and the
classification is complex, therefore we decided to ignore
them for any classification.

Line additions are only classified as covered if the original
lines before and after the addition point are covered. We
found several examples invalidating a less strict approach.
We only expect errors if the source code is badly formatted,
e.g. there is no space between two functions and a new
function was inserted or goto is used. We did not find such
counterexamples.

We classify bug-fixes according to< coverage before the
corresponding tests for bug identification are created and
measured in coverage runs. SAP engineers create tests for
bugs which are used to reproduce the bug and assure the
removal of the bug. We use coverage data before such tests
are included within the coverage runs, therefore such tests

do not influence the classification of a current commit.
They can influence the classification of future commits,
e.g. if a second patch is necessary to fully fix a bug.

III. Empirical Results
This section presents the results of data processing and

attempts to answers our main research question on the
impact of code coverage. We will first discuss the results
and implications and then highlight possible threats.

A. Results
Data processing. For the time frame from May 2016

to April 2017, we collected 72 coverage runs and 16 215
bug-fixing commits which represent the same amount of
bugs. For these bug-fixing commits, we extracted 76 979
sections from the diff output from git with cumulatively
376 364 chunks. Among them, 239 119 chunks modify files
contained in the coverage data and only 4 482 chunks
cannot be used because of source mismatch. We found
that 94 891 chunks occur in covered parts of the source
code, 101 907 chunks occur in uncovered parts of the source
code, and for 37 839 chunks it cannot be decided. Based on
these results we identified 24 571 sections as covered, 15 210
sections as uncovered, and 7 483 sections as undecided.

As shown in Table II, cumulatively 8 348 (or 51.48 %) of
all bug-fixes occurred in covered parts of the source code,
6 171 (38.06 %) are uncovered, and 1 696 (10.46 %) of all
bug-fixes are of type undecided.
Testedness results. To implement the testedness cri-
terion from Section II-A we compare the observed number
Nobs of bugs found in tested code against the expected
number Nexp of bugs within the covered code, where
Nexp is computed under the assumption that coverage
level is meaningless (null hypothesis). Obviously Nexp can
be approximated as number of all found bugs times the
coverage ratio. For example, in Figure 1 Nexp = 8 based
on Scenario 1, but Nobs = 3 based on Scenario 2. If Nobs

is lower than Nexp, we can conclude that higher coverage
levels correlate with higher software quality in our test
subject.
We approximate the location of bugs in the source

code by the location of bug-fixing commits (Section II-C).
Furthermore, to be on the safe side, we conservatively
assume that undecided bug-fixes are covered bug-fixes. In
other words, we compute Nobs as the sum of covered bug-
fixes and undecided bug-fixes.
Contrary to [2] we perform this comparison for each of

the 72 time segments described in Section II-A, and not
only for a single snapshot. For each segment we use ‘local’
coverage ratio (and local numbers of covered / uncovered
/ undecided bug-fixes). For confidentiality reasons, we
cannot explicitly state these coverage ratios.

Figure 5 shows a comparison of the numbers of covered
bug-fixes plus undecided bug-fixes (sums Nobs,i) versus
the numbers Nexp,i of covered bug-fixes expected under
the null hypothesis, for each segment i = 0, 1, . . . , 70. Only



Table I
Preprocessing statistics for the bug-fixing git commits

collected from May 2016 to April 2017 (1 year).

Metric Number

Lines of executable code Several millions
Number of source files > 25 000
Full coverage runs 72
Bug-fixing commits 16 215

For bug-fixing commits:
Diff sections 76 979
Sections covered 24 571
Sections uncovered 15 210
Sections undecided 7 483
Files added 5 595
Lines in new files 1 044 451

Files deleted 1 156
Lines in deleted files 279 674

Files moved 89
Files with content changes 70 139
Lines added in changes 770 325
Lines deleted in changes 471 926

Files with coverage information 47 264
Files without coverage information 22 875

For sections:
Diff chunks 376 364
Average number of chunks per section 4.89
Average number of chunks per commit 23.21

Skipped chunks source mismatch 4 482
Percentage 0.01 %

Chunks with coverage information 239 119
Chunks covered 94 891
Chunks uncovered 101 907
Chunks undecided 37 839

Table II
Numbers of bug-fixing commits (bug-fixes) in our data set by

categories defined in Section II-D.

Metric Number Percentage

Total number of bug-fixes 16 215 100%
Bug-fixes in covered source code 8 348 51.48 %
Bug-fixes in uncovered source code 6 171 38.06 %
Bug-fixes with undecided coverage 1 696 10.46 %

the first 71 segments are shown for presentation reasons.
Figure 6 shows the differences Nexp,i − Nobs,i in greater
detail.
For all but 2 out of the 72 time segments we have

Nexp,i > Nobs,i which suggests that coverage is a mean-
ingful metric. At the same time, the relative reduction of
the number of bug-fixes per segment is not large. However,
this can be in part attributed to our conservative way of
treating undecided bug-fixes as covered bug-fixes.

We also applied the Wilcoxon signed-rank test to reject
the null hypothesis that the mean of expected numbers
of covered bug-fixes Nexp,i and the mean of numbers of
covered plus undecided bug-fixes Nobs,i are equal. The test
confirms this with p-value less than 2.2e − 16, and effect
size r = 0.612 which is considered as large (r > 0.5).
This non-parametric test is a paired difference test,

i.e. we assume that the samples of covered bug-fixes

0 10 20 30 40 50 60 700

200

400

600

800

1,000

Index of the time segment

Expected num. of covered bug-fixes Nexp,i

Covered plus undecided bug-fixes Nobs,i

Differences Nexp,i − Nobs,i

Figure 5. Expected numbers of bug-fixes Nexp,i, numbers of covered
plus undecided bug-fixes Nobs,i, and their differences for time seg-
ments i = 0, . . . , 70.

0 10 20 30 40 50 60 70
0

50

100

Index of the time segment

Figure 6. Differences Nexp,i−Nobs,i for 71 time segments. y-values >
0 indicate that less bugs occurred than expected.

and uncovered bug-fixes are dependent. This is quite
likely and indicated by Figure 5. However, we have also
applied the Wilcoxon-Mann-Whitney-Test which assumes
two independent samples. Also here the null hypothesis
was rejected (p-value = 0.06322) but with small to medium
effect size (r = 0.13).

The numbers of bugs (represented by bug-fixes) in
covered code are smaller than expected if code coverage
would be meaningless. This holds for 70 ouf of 72 time
segments and is statistically significant for the means.

B. Discussion of the Results

Our results provide a fairly good support for the thesis
that higher coverage levels imply lower levels of future bug-
fixes for our test subject. This is in particular strengthened
by the fact that in 70 out of 72 time segments the results
agree with the hypothesis. In other words, the positive
effect could be observed consistently over time, for large
variation of bug numbers. This supports the argument that
setting (and reaching) goals for coverage ratio can have a



positive effect on the overall quality of our test subject by
reducing the amount of future bugs.

There are multiple possible explanations for these results.
Of course, the most plausible and widely assumed one is
that the tests covering code detect bugs often, and since
most of these defects are fixed, less of them remain.
We also consider an alternative interpretation of the

results: that uncovered parts of the source code might
include code for which it is difficult to achieve coverage.
One well-known example are execution paths in face of
rare error conditions, e.g. if malloc returns a null pointer.
Such return values might not be checked correctly in code
because they are not trivial to test, leading to failures if
these rare error conditions occur during production usage.
A second example is code with a high amount of depend-
encies. This code requires additional effort to test, because
all of the dependency interaction must be simulated. A
third example comprises code handling external input, e.g.
SQL queries. In this case is it hardly feasible to test all
possible valid and invalid input combinations and fuzzing
techniques can require a high time and resource costs.

C. Threats to Validity

Possible threats to our results contain (non-)causality,
bad bug classification, and wrong coverage granularity.
Based on our results, we can conclude that fewer bug-

fixes occurred in covered parts of the source code then
expected. However, we cannot confirm the causality, i.e., we
can not conclude that testing caused the reduced numbers
of bugs.
We used an existing bug database to retrieve all bugs.

These bugs represent only late defects (see Section II-B).
We argue that these bugs are the more interesting defects,
because they are more expensive to fix [8], and apparently
harder to detect. Analysing all defects could generate differ-
ent results for our research question. From our experience,
it seems impractical to log all ‘easy’ and early defects
during the development, and distinguishing between early
and late bugs is hardly possible for young projects.
The bug classification within the bug tracking tool

could be wrong. Developers could misuse the bug category
for enhancements or other tasks. The bug tracking tool
contains different categories for entries, therefore we do
not expect that developers mislabel entries intentionally.
But their decision could be wrong. 88 % of all entries are
bugs, the remaining 12 % consists of the categories feature,
enhancement, and performance. In addition, SAP enforces
a strict policy of bug-labelling. These measures reduce the
likelihood of this mislabelling to happen.
We also investigated the possibility that a bug-fixing

commit does not only contain the bug-fix, but also unre-
lated code changes. Herzig et al. found that 15 % of all
bug-fixes in five open-source projects contain unrelated
changes according to [12]. One of the reasons why such
unrelated changes happen is the boyscout-principle: ‘Leave

the campground cleaner than you found it’ [11]. Accord-
ing to SAP engineers, unrelated changes happen rarely,
because developers focus on fixing the bug and avoid to
introduce unrelated regressions in the same bug-fixing
commit. Enforced commit based code reviews also reduce
the probability that unrelated changes are introduced in
the same commit as the bug-fixing change. If unrelated
changes happen, this could only increase the amount of
bugs in covered code, and can not decrease it.

Our coverage data is line based. A finer granularity (e.g.
statement coverage) could produce different results for our
research question. We expect only a minor effect, because
bug-fixing commits occur rarely in a fine granularity.
Coverage from different test types is mixed. The large

corpus of tests for coverage creation contains a mix of e.g.
component tests, integration tests, regression tests, system
tests, performance tests. It is not clear how this affects the
result.

Finally, we only investigate one large industrial system.
We do not have access to a second industrial software
projects with this size and similar test environment and
test data. It is unclear if our results can be reproduced in
other large industrial software systems.

IV. Related Work
There are a number of research publications analysing

the question whether code coverage and coverage goals are
beneficial for measuring and improving software quality.
Works supporting benefits of code coverage.

These publications often study correlation between code
coverage ratio and number of bugs in different test subjects.
For example, Mockus et al. investigate the correlation
between coverage ratio and probability of defects affecting
a component on two industrial software projects and the
effort required to increase the coverage ratio [13]. They
find that an increase in coverage leads to a proportional
decrease in defects without any indication of diminishing
returns. Ahmed et al. analyse 49 open source projects to
understand the correlation between coverage and bugs [2]
(see also Section II-A). They find a weak but significant
correlation between statement coverage and number of bug-
fixes. Kochhar et al. investigate two large software sys-
tems to compute correlations between coverage, test suite
size, and its effectiveness. They find moderate to strong
correlation between coverage and test suite effectiveness
[14]. A metastudy by Inozemtseva et al. showed that eight
out of 12 studies confirmed a positive correlation between
coverage and effectiveness of a test suite [1].
Works contradicting the benefits of code cover-

age. While also here correlation analysis is used, some
authors consider more and other variables than only
coverage and bugs. For example, Inozemtseva et al. study
correlation between coverage and test suite effectiveness
in five open source systems, but they also control the test
suite size for their experiments [1]. They find that it is
generally not safe to assume that test suite effectiveness



is strongly correlated with coverage. In fact, their results
indicate that test suite size is correlated with test suite
effectiveness and code coverage does not show a strong
correlation with test suite effectiveness if the test suite
size is controlled. Namin et al. indicate similar results for
smaller study subjects and investigate multiple models for
the correlation [15]. Groce et al. provides an extensive
overview for existing work highlighting limitations [16].
Mixed results. Some works claim that the answer

depends on the exact question, definitions of the terms,
and potentially on more variables [15]–[18]. For example,
Groce et al. argue in their survey that there is uncertainty
as to what exactly measuring code coverage should achieve,
as well as how we would know if it can, in fact, achieve
it. They develop a strong and weak coverage hypothesis
to provide a meaningful context for further discussion and
experiment design [16].

V. Conclusions

We applied the binary testedness approach from Ahmed
et al. [2] to SAP HANA, a large industrial software project.
Instead of using mutants, we used a large set of real
bugs and bug-fixing commits. In addition, we introduced
multiple data collection points to reduce the risk of losing
track of code changes over time. Our results show that a
significantly lower number of bugs occur in covered parts
of the source code in our test subject than expected if
coverage would be meaningless. For practitioners, our res-
ults suggest that setting (and reaching) goals for coverage
ratio has a positive effect on the overall quality of our
test subject in terms of the amount of future bugs. This
confirms previous conclusions from Ahmed et al. [2] and
Mockus et al. [13].

For SAP engineers, our results confirm the expectation of
engineers and management, that measuring coverage and
enforcing coverage goals can be beneficial to the quality
of SAP HANA. The internal impact of this study can
not be measured, because changes to QA policies require
more time and considerations and could require further
investigations as highlighted in future work.
There are several directions to extend our results in

future work. Similar to work of Mockus et al [13], the
binary testedness approach could be used on a compon-
ent level instead of a system level. A component level
analysis could produce comparable results between the
different components in SAP HANA and could reveal
positive or negative factors. Also, a long term experiment
over different release cycles of a software project might
disclose whether different coverage goals had an impact
on the number of bugs. Mockus et al. [13] found that
‘there is no indication of diminishing returns (when an
additional increase in coverage brings smaller decrease in
fault potential)’. It would be interesting to replicate our
study on large open source projects to investigate if similar
findings can be observed for such projects.

Furthermore, we plan to consider the test multiplicity
(i.e. number of test suites covering a code line), as it is
likely that more intensely tested code shows less future
bugs. For example, is there a difference in the amount
of future bugs for a the source code line whether it was
executed and tested by 100 tests or by only 1 test?

References
[1] L. Inozemtseva and R. Holmes, “Coverage is not strongly correl-

ated with test suite effectiveness,” in ICSE, 2014, pp. 435–445.
(Cited from: I and IV)

[2] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen,
“Can testedness be effectively measured?” in FSE, 2016, pp. 547–
558. (Cited from: I, 2, II, II-A, 3, II-C, III-A, IV, and V)

[3] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees, “The sap hana database – an architecture overview.”
IEEE Data Eng. Bull., vol. 35, no. 1, pp. 28–33, 2012. (Cited
from: I)

[4] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner, “Sap hana database: Data management for modern
business applications,” SIGMOD Rec., vol. 40, no. 4, pp. 45–51,
Jan. 2012. (Cited from: I)

[5] N. May, A. Böhm, and W. Lehner, “SAP HANA - the evolution
of an in-memory DBMS from pure OLAP processing towards
mixed workloads,” in BTW, 2017, pp. 545–563. (Cited from: I)

[6] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-
perrus, “Fine-grained and accurate source code differencing,” in
ASE, 2014, pp. 313–324. (Cited from: II-A)

[7] T. Bach, A. Andrzejak, and R. Pannemans, “Coverage-based
reduction of test execution time: Lessons from a very large
industrial project,” in ICSTW, March 2017. (Cited from: II-B)

[8] B. W. Boehm and P. N. Papaccio, “Understanding and con-
trolling software costs,” IEEE Trans. Softw. Eng., vol. 14, no. 10,
pp. 1462–1477, Oct. 1988. (Cited from: II-B and III-C)

[9] “International software testing qualifications board (istqb),”
http://www.istqb.org/, accessed: 2017-06-21. (Cited from: II-B)

[10] “Git distributed version control system,” https://git-scm.com/,
accessed: 2017-06-21. (Cited from: II-D)

[11] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2008. (Cited from: III-C)

[12] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining
Software Repositories, ser. MSR ’13. Piscataway, NJ, USA:
IEEE Press, 2013, pp. 121–130. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2487085.2487113 (Cited from:
III-C)

[13] A. Mockus, N. Nagappan, and T. Dinh-Trong, “Test coverage
and post-verification defects: A multiple case study,” in ESEM,
2009, pp. 291–301. (Cited from: IV and V)

[14] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and
test suite effectiveness: Empirical study with real bugs in large
systems,” in SANER, 2015, pp. 560–564. (Cited from: IV)

[15] A. S. Namin and J. H. Andrews, “The influence of size and
coverage on test suite effectiveness,” in Proceedings of the
Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009, pp.
57–68. (Cited from: IV)

[16] A. Groce, M. A. Alipour, and R. Gopinath, “Coverage and its
discontents,” in Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software. ACM, 2014, pp. 255–268. (Cited
from: IV)

[17] B. Smith and L. A. Williams, “A survey on code coverage as
a stopping criterion for unit testing,” North Carolina State
University. Dept. of Computer Science, Tech. Rep., 2008. (Cited
from: IV)

[18] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp.
366–427, Dec. 1997. (Cited from: IV)

http://www.istqb.org/
https://git-scm.com/
http://dl.acm.org/citation.cfm?id=2487085.2487113
http://dl.acm.org/citation.cfm?id=2487085.2487113

	Introduction
	Approach
	Binary Testedness Approach
	Testing Environment of SAP HANA
	Data Collection and Processing
	Classifying Bug-Fixes by Coverage

	Empirical Results
	Results
	Discussion of the Results
	Threats to Validity

	Related Work
	Conclusions
	References

