
Empirical Study of Usage and Performance of Java
Collections

Diego Costa
Institute of Computer Science

Heidelberg University,
Germany

diego.costa@informatik.uni-
heidelberg.de

Artur Andrzejak
Institute of Computer Science

Heidelberg University,
Germany

artur@uni-hd.de

Janos Seboek
Institute of Computer Science

Heidelberg University,
Germany

seboek@cl.uni-
heidelberg.de

David Lo
School of Information Systems

Singapore Management
University, Singapore

davidlo@smu.edu.sg

ABSTRACT
Collection data structures have a major impact on the per-
formance of applications, especially in languages such as
Java, C#, or C++. This requires a developer to select an
appropriate collection from a large set of possibilities, in-
cluding different abstractions (e.g. list, map, set, queue),
and multiple implementations. In Java, the default imple-
mentation of collections is provided by the standard Java
Collection Framework (JCF). However, there exist a large
variety of less known third-party collection libraries which
can provide substantial performance benefits with minimal
code changes.

In this paper, we first study the popularity and usage
patterns of collection implementations by mining a code
corpus comprised of 10,986 Java projects. We use the re-
sults to evaluate and compare the performance of the six
most popular alternative collection libraries in a large vari-
ety of scenarios. We found that for almost every scenario
and JCF collection type there is an alternative implementa-
tion that greatly decreases memory consumption while of-
fering comparable or even better execution time. Memory
savings range from 60% to 88% thanks to reduced overhead
and some operations execute 1.5x to 50x faster.

We present our results as a comprehensive guideline to
help developers in identifying the scenarios in which an al-
ternative implementation can provide a substantial perfor-
mance improvement. Finally, we discuss how some coding
patterns result in substantial performance differences of col-
lections.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030221

Keywords
empirical study, collections, performance, memory, execu-
tion time, java

1. INTRODUCTION
Collection libraries and frameworks offer programmers data

structures for handling groups of objects in an abstract and
potentially efficient way. The popularity and importance of
such libraries and frameworks is indicated by the fact that
programming languages such as Java, C#, Python, Ruby,
or C++ include them as a part of the core language envi-
ronment (STL is a de facto standard in case of C++.)

Typically in such libraries each of the major abstract col-
lection types (e.g., lists, sets and maps) has multiple imple-
mentations adhering to the same API. Each implementation
attempts to fulfill the requirements of different execution
scenarios and thus provides different trade-offs. For exam-
ple, Java’s ArrayList has a smaller memory footprint than a
Java LinkedList, yet it has a higher asymptotic complexity
when it comes to inserting or deleting elements at random
positions.

Given that modern programs use collections in thousands
of program locations [23], selecting appropriate type and im-
plementation is a crucial aspect of developing efficient ap-
plications. Choosing a wrong collection may result in per-
formance bloat - the excessive use of memory and computa-
tional time for accomplishing simple tasks. Numerous stud-
ies have identified the inappropriate use of collections as the
main cause of runtime bloat [5, 16, 27, 28]. Even in produc-
tion systems, the memory overhead of individual collections
can be as high as 90% [16].

The problem of selecting an appropriate collection be-
comes more complex when accounting for third party li-
braries. These allow for many more choices compared to
the standard Java Collection Framework (JCF), from simple
alternatives to existing JCF implementations to collections
with extra features such as immutability and primitive-type
support.

Despite its importance, we found a gap in experimental
studies comparing execution and memory performance of
non-JCF collections. Partial benchmarks, especially on the

http://dx.doi.org/10.1145/3030207.3030221

websites of the libraries, are common enough; they, however,
do not give a performance comparison for different libraries,
nor do they provide an evaluation under a large set of sce-
narios. This paper attempts to fill this gap in experimental
studies and derive a set of guidelines for developers on how
can they improve performance with little code refactoring.

To this aim (i) we study the usage of collections in real
Java code via repository mining and (ii) evaluate the mem-
ory consumption and execution performance of collection
classes offered by six most popular collection libraries. The
key question to be answered by our study is: ”Can we im-
prove performance of applications in typical scenarios by
simply replacing collection implementations, and if yes, to
which degree?”. In particular, we explore alternatives to JCF
implementations under the same collection abstraction.

Our results show a considerable variance in performance
in different implementations of the same data structure.
Moreover, the best alternative implementations outperform
the collections provided by the standard JCF library across
many workload profiles, making them a better choice in
terms of memory consumption and runtime for most appli-
cations in many circumstances. Improvements range from
20% to 50 times in execution time, and saving up to 88% in
memory.

The contributions of this paper are as follows:

• We analyze the popularity and usage patterns of col-
lection libraries based on mining a dataset with 10,986
Java projects (Section 3).

• We propose a framework for systematic evaluation of
collection performance. This framework can be further
extended to cover new libraries, scenarios and imple-
mentations (Section 4).

• We evaluate the performance of JCF and six major
alternative libraries in terms of execution and memory
under a variety of scenarios. As a part of the study,
we investigate the performance of primitive collections
(Section 5).

• We provide a guideline for developers on replacing
standard JCF collections by alternative implementa-
tions based on performance characteristics (Section 6).

• We explain the causes of performance differences of col-
lection implementations by analyzing the source-code
and benchmark indicators for some relevant scenarios
(Section 6).

2. BACKGROUND
Collections are data structures that group multiple ele-

ments into a single unit. A collection uses metadata to
track, access and manipulate its elements via specified APIs.
Naturally, the metadata incurs extra memory consumption
(collection overhead) in addition to the memory used by its
elements (element footprint). Collections come in several
abstraction types, primarily list, map, set, and queue.

The standard implementation of the collections in Java
is the Java Collections Framework, or JCF. It provides im-
plementations of all major abstraction types in several vari-
ants, e.g. ArrayList, HashMap, HashSet and others. JCF is
implemented purely as object collection, i.e. the metadata
contains only references to Java objects, but no data itself
(Figure 1).

Collection
Overhead

Elements
Footprint

Elements
Footprint

Collection
Overhead

O
b
j
e
c
t
[
]

i
n
t
[
]

Integer

4 bytes

16 bytes

Object collection Primitive collection

Object Collection Footprint

P
ri

m
it

iv
e

C
o

lle
ct

io
n

 F
o

o
tp

ri
n

t

Figure 1: Conceptual view of object collections vs.
primitive collections with the example of ArrayList,
and terms related to memory usage.

The JCF offers programmers a stable and reliable collec-
tions framework. However, there exist many alternative col-
lection libraries that can outperform standard JCF abstrac-
tion types, and additionally target features not supported
by the JCF, such as immutable collections, multisets and
multimaps.

If a collection contains simple objects like Integer, Long,
Double, Character, etc., primitive collections can be used to
reduce the memory footprint. The key difference is that a
primitive collection stores data directly in an array of prim-
itives (int, long, double, char), instead of using an array of
references to data objects. Figure 1 illustrates an ArrayList
of integers as an object collection (left) and a primitive col-
lection (right). The primitive variant reduces the collection
footprint in two ways. First, the primitive collection needs
only a single reference to an array of primitives instead of
an array of references. Second, each primitive data element
(type int) requires only 4 bytes instead of 16 bytes of an
object Integer. This example indicates that alternative col-
lections can slash memory footprint of collections by a large
factor.

3. ANALYSIS OF COLLECTION USAGE
In this section we describe the usage patterns of collections

found in a large code corpus. Understanding such patterns
helps us to identify the most popular collection types and
implementations. This study will help us devise a bench-
mark presented later in the paper.

3.1 Data and Static Analysis
For our analysis we use the GitHub Java Corpus [1], a

dataset from GitHub containing 10,986 Java projects, in to-
tal more than 268 millions lines of code. This corpus consists
only of projects with more than one fork to eliminate small
or inactive projects, which prevail at GitHub [12]. In ad-
dition, the creators of GitHub Java Corpus analyzed and
pruned this dataset manually in order to eliminate project
clones.

We categorize the whole data into two sets of reposi-
tories, namely all projects provided by Java GitHub Cor-
pus (FullSet) and a subset of the 50 most popular projects
(Top50). The popularity of the latter set is based on rank-
ing of projects provided by GitHub corpus [1], and it is illus-

trated by the fact that Top50 contains projects like Eclipse
IDE1, Clojure2, and Elastic Search3. By analyzing both sets
we can investigate whether there is an impact of project
maturity (approximated by popularity) on the patterns of
collection usage.

We need to extract from the code every declaration of a
collection and every site of a collection instantiation. This
is needed to count the usages of collection classes, record
the types of held elements, and count how often the initial
capacity is specified. We use JavaParser4 to extract each
variable declaration and instantiation site in the code. We
then filter the collection instances by applying a heuristic as
defined by the following regular expression:

.*List|.*Map|.*Set|.*Queue|.*Vector| .

This pattern finds all collection implementations of inter-
est but also retrieves some false positives, e.g., java.util.BitSet
is not a general purpose collection but is retrieved by our
heuristic regardless. We rank the retrieved types and man-
ually inspect and filter out false positive for the top 99% of
the retrieved data, ranked by occurrence.

3.2 Collections Usage in Real Code

Collection Types. We analyze the instantiations sites and
extract the most used collections in the code (see Figure 2).
Unsurprisingly, list is the most commonly used collection
abstraction, followed by map and finally by set. Our ranking
is dominated by JCF as developers only rarely opted for
others, not nearly often enough to make it into our charts.

Among the abstraction types, lists are the most common
(≈ 56%), followed by maps (≈ 28%) and sets (≈ 15%).
Contrary to this, queues are rather rare (1.23% of usages).
Among lists, ArrayList makes up the bulk of all collections
usages, namely 47%. The LinkedList is surprisingly com-
mon, with ≈ 5% and is ranked as the fourth most com-
mon implementation. In maps, HashMap is most commonly
used, representing ≈ 23% of all collections instantiation, fol-
lowed by LinkedHashMap (≈ 2%) and the TreeMap (≈ 1%).
Set instances follow a similar pattern to maps, HashSet is
most used (≈ 10%), followed by TreeSet and LinkedHashSet
with both ≈ 1% of occurrences.

In summary, the top four most frequently used collections
are JCF implementations: ArrayList, HashMap, HashSet
and LinkedList. Together they account for approximately
83% of all collections declared in the repository. We found
a similar distribution in Top50, which have a slightly higher
usage of concurrent collections and a lower variety of types.

Element Types. By element type we mean the object types
held by collections. Understanding their distribution helps
us to cover in our benchmark the most frequent real sce-
narios. To simplify, we group the element types into four
categories:

• Strings: String, String[], and String[][].

• Primitives: The primitive-wrappers such as Double,
Float, Long, Short, Integer, as well as Boolean, Char-
acter, and their respective arrays.

1 https://github.com/eclipse/eclipse.jdt/
2https://github.com/clojure/clojure
3https://github.com/elastic/elasticsearch
4https://github.com/javaparser/javaparser

• Collections: Collection types that can be identified by
our heuristic from Section 3.1.

• Other: All the classes and data types not fitting any
of the mentioned categories.

The result of our analysis, presented in Figure 3, shows a
clear similarity between the results in FullSet and Top50. A
pattern that emerges is the similar usage of primitive wrap-
pers throughout the categories, always ranging from ≈ 5%
to ≈ 8% of the declarations. This category is particularly
interesting because it contains the collections that can be
replaced by primitive collections with simple code refactor-
ing.

The remaining categories show a distinct pattern for each
of lists, maps and sets. Lists have a higher variability of
element types, but hold strings ≈ 20% of the time. Sets
hold strings more often than lists, ≈ 31% of the time. Maps
also hold strings very often: ≈ 70% of all declared maps use
the String as a key and ≈ 28% as a value. Map values are
often a collection (≈ 15%) pointing to a common usage of
maps as a collection holder.

Initial Capacity Specification. Defining an appropriate
initial capacity of a collection is a simple but effective method
for optimizing runtime and memory. We sample 400 of
the instantiation sites of ArrayList, HashSet and HashMap,
which give us 5% confidence interval. Then we manually
categorize whether a developer specifies an initial capacity,
copies this instance from another collection, or uses default
constructor values.

Figure 4 shows that programmers specify initial capacities
for ArrayList only in ≈ 19% of the declarations. HashMap
and HashSet have their capacity specified in ≈ 7% and
≈ 8% of collection declarations, respectively. Our anal-
ysis with the Top50 provides very similar results, with a
slightly higher percentage of initial capacity in ArrayList
declarations. Interestingly, HashSet is the category more
commonly created through copy instruction (in ≈ 11% of
cases in FullSet and ≈ 14% in Top50).

Project Maturity and Collections Usage. We found sim-
ilar results in our analysis of FullSet and Top50. This indi-
cates that, regardless of the project maturity, programmers
instantiate collections in a similar fashion. They mostly se-
lect standard collections types, and rarely specify the initial
capacity in a collection instantiation.

4. EXPERIMENTAL DESIGN
In this section we describe the design of experiments for

evaluating performance of collection implementations in terms
of execution time and memory usage. In particular:

1. We identify a suitable set of collection libraries for this
evaluation through ranking of libraries in terms of their
popularity.

2. We describe a benchmark framework capable of mea-
suring the steady-state performance of collections with
high precision.

3. We design an experimental plan which covers a large
set of usage scenarios based on the findings of usage
patterns reported in Section 3.

ArrayList
47%

LinkedList
5%

CopyOnWriteArrayList
<1%

Other Lists
4%

HashSet
10%

TreeSet
1%

LinkedHashSet
1%

Other Sets
3%

HashMap
21%

LinkedHashMap
2%

TreeMap
1%

Other Maps
4%

LinkedBlockingQueue
<1%

Other Queues
1%

Lists

Sets

Maps

Queue

Figure 2: Distribution of instantiated collection
types in FullSet. Every specific collection in this
chart is from JCF, as standard implementations are
the most prominent ones.

0%

20%

40%

60%

80%

100%

Lists Sets Map
Keys

Map
Values

FullSet

Lists Sets Map
Keys

Map
Values

Top50

String

Numeric

Collections

Other

Figure 3: Distribution of element types by collec-
tion for both the FullSet and the Top50 set.

ArrayList HashMap HashSet

Top50

Specified

Default

Copy

0%

20%

40%

60%

80%

100%

ArrayList HashMap HashSet

FullSet

Figure 4: Statistics on the style of specifying ini-
tial capacity of collections for FullSet and Top50.
”Specified” denotes that the developer explicitly
set the initial capacity, and ”Copy” that a copy
constructor was used.

The results of rigorous statistical analysis of each evaluated
scenario are presented then in Section 5.

Note that we compare the performance within the same
abstraction type (i.e. list, map, set). Our experimental pa-
rameters include the number of elements held in a collection,
and a particular usage scenario (Section 4.2).

4.1 Selection of Collection Libraries
We search the Web for alternative collection libraries im-

plemented in Java and find a total of 14 libraries. From
these, we use two different approaches to extract a suitable
set for our experimental evaluation. First, we rank them
by popularity of their project in GitHub, see Table 1. Sec-
ond, we analyze how many times they have been included
in existing benchmarks (Table 2).

The GitHub metrics such as number of stars and number
of watches provide a simple but effective method for rank-
ing software projects. Such metrics have also been used as
a criterion in other studies [19, 22]. To account for libraries
that are not on GitHub, we retrieve a set of collection bench-
marksfrom the web, and count for each collection library in
how many benchmarks it was evaluated.

Furthermore, we filter libraries that do not provide imple-
mentations that can serve as a replacement to JCF collec-
tions. This excludes Javaslang as it provides only immutable
collections for lambda function usage. In the final step we
select the top five libraries from each ranking and merge
them into a single list. This yields seven unique libraries
(three of them occur in both rankings) to be included in our
experimental evaluation. For this study we use the JCF of
Java 8 (jdk1.8.0 65.)

4.2 Benchmark Design
A managed runtime environment such as the Java Vir-

Table 1: Ranking of collection libraries by GitHub
popularity. We select the top 5 collections from this
ranking. Data was obtained on 28 September 2015.

Rank Library # Stars # Watches
1 Guava 5067 641
2 GS-Collection 1293 196
3 Koloboke 369 69
* Javaslang 309 31
4 HPPC 189 31
5 Fastutil 69 6
6 HPPC-RT 8 3

tual Machine poses a challenge for performance measure-
ment. Numerous factors can affect performance: the effects
of the garbage collector, the Just in Time compilation (JIT),
the heap size, the method sampling optimization, and many
other unpredictable system effects [3, 4, 18]. To reduce the
impact of these factors we follow the suggestions by Georges
et al. [4] and implement a four-step methodology for evalu-
ating a steady state performance of collection implementa-
tions:

S1 For each scenario we execute ten warm-up iterations
to achieve a steady performance 5.

S2 We execute 30 iterations while measuring our response
variables. Each iteration executes the same operation
(sample) in an uninterrupted fashion for five seconds.
After reaching the timeout, we calculate the average
of all samples as a result. Each result also contains

5Our preliminary analysis showed that the execution time
of the experiment converges after seven warm-up iterations

Table 2: Ranking of collection libraries by number
of occurrences in benchmarks. We select the top 5
collections from this ranking.

Rank Library # Occurrences
1 JCF 13
2 Trove 10
3 HPPC 6
4 Koloboke 5
5 Fastutil 4
6 GS-Collection 4
7 Javolution 4
8 Guava 3
9 Mahout 3
10 Commons 2
11 Brownies 1
12 Colt 1
13 Javaslang 0
13 HPPC-RT 0

the experimental error of the iterations at a 99% con-
fidence interval.

S3 We execute steps S1 and S2 twice to avoid circumstan-
tial external influence.

S4 We analyze the results of 2 x 30 iterations using rigor-
ous statistical methods. In detail, we analyze the vari-
ance with ANOVA [17] and compare multiple means
accounting for their experimental errors.

We perform this experimental methodology on our bench-
mark suite called CollectionsBench. CollectionsBench is built
upon JMH6, a Java harness framework for building, run-
ning and pre-analyzing benchmarks. JMH provides support
for benchmark forks, warm-up iterations, and can give the
benchmark results with nanosecond precision.

To reliably measure performance using CollectionsBench,
we perform the following steps: First, we guarantee a ho-
mogeneous benchmark behavior throughout different collec-
tion implementations. The Template design pattern helps
us reuse the same test code in all JCF compliant libraries
(see Table 3) and to delegate the collection creation to the
library specific code. Second, we consume every non-void
return to avoid undesired dead-code optimization. All these
steps help to minimize sources of non-determinism in the
JVM.

Finally, to only measure time and memory on the collec-
tions operations, we divide our experiment into two distinct
setup and benchmark phases: In the setup phase we allocate
all the elements and insert them into an instance of the eval-
uated collection. The values of each element are generated
randomly through a uniform distribution, and we then reuse
the random seed to ensure the same conditions in all tests.
In the benchmark phase we execute the collection operations
and measure the following response variables:

• Execution time: Time spent executing the benchmark
in nanoseconds, using JMH native support.

• Memory allocation: The sum of memory requested
during the benchmark execution. Since we allocate
the elements in the setup phase, this variable shows
only the memory requested for the collection overhead
(including the collection object header and eventual

6http://openjdk.java.net/projects/code-tools/jmh/

memory padding), but does not consider the element
footprint. We extract this information through the
JMH GC profiler.

We also collect some performance indicators through the
Perf7 profiler, such as the number of instructions executed,
cache miss rate and branch misprediction rate. In Section 6
we analyze those indicators along with the source-code to
understand the reasons for performance differences of im-
plementations.

The memory allocated during the benchmark is sensitive
to buffers and temporarily allocated objects. For instance,
when expanding the ArrayList allocates a new and larger
buffer to accommodate more elements. The previously al-
located buffer and the new one will be measured by the
memory allocation variable. Therefore, the memory alloca-
tion alone cannot provide an accurate view of the memory
usage of a collection.

To account for this problem, we evaluate the memory us-
age of a collection by computing their collection overhead.
We use the tool Java Object Layout (JOL)8 to retrieve the
collection overhead of each implementation. We then ana-
lyze both memory allocation and overhead together, to give
a detailed perspective of a collection’s memory consump-
tion.CollectionsBench is open-source and is fully available
online9.

4.3 Experimental Planning
Our experimental plan takes into consideration the find-

ings on collections usage presented in Section 3. First, we fo-
cus on the most frequently used collection types while inves-
tigating possible alternatives (from third-party libraries) to
the JCF collections. Therefore we select the four most used
collection types, ArrayList (AL), LinkedList (LL), HashMap
(HM), HashSet (HS), which accounts for more than 84% of
all declared collections.

Most of the libraries do not implement an alternative to
LinkedList, so we opted to compare JCF LinkedList imple-
mentations against ArrayList alternatives, as they are in-
terchangeable. We also profile primitive alternatives to the
top three collection types, as they provide a small-footprint
option to collections that hold primitive wrappers (see Ta-
ble 3).

Second, we pay a special attention to collections holding
the element type String. Strings are particularly interesting
in Java due to their extensive use, and have been studied
by various authors [13]. To expand on the results, we eval-
uate the collection implementations for Integer and Long
objects as well. We opt for these two numeric objects as
they are representative: primitive-wrappers are the second
most common category identified. Moreover, they mainly
represent objects with 32 bytes and 64 bytes respectively, a
common object size.

Third, we do not specify the initial capacity in our bench-
mark because from our static analysis results, specifying the
initial capacity is done rarely in real code. Since we aim to
provide results that are useful to the widest range of pro-
grammers, we evaluate collections with their default initial
capacity.

Fourth, given C as a collection populated with N elements

7https://perf.wiki.kernel.org/index.php/Main Page
8http://openjdk.java.net/projects/code-tools/jol/
9https://gitlab.com/DiegoCosta/collections-bench

Table 3: The evaluated collection implementations. The primitive implementations are marked with (p). The
column JCF indicates whether the libraries provide implementations compatible with the Java Collection
Framework (only for object collections). In total we evaluate 33 implementations.

Library Version JCF List(AL/LL) HashMap (HM) HashSet (HS)

JCF [20] 8.0 65 yes
ArrayList

HashMap HashSet
LinkedList

Guava (Gu) [8] 18.0 no HashMultimap HashMultiset

Fastutil (Fu) [24] 7.0.10
yes ObjectArrayList Object2ObjectOpenHashMap ObjectOpenHashSet
– IntArrayList(p) Int2IntOpenHashMap(p) IntOpenHashSet(p)

Koloboke (Ko) [2] 0.6.8
yes HashObjObjMap HashObjSet
– HashIntIntMap(p) HashIntSet(p)

HPPC (HP) [21] 0.7.1
no ObjectArrayList ObjectObjectHashMap ObjectHashSet
– IntArrayList(p) IntIntHashMap(p) IntHashSet(p)

GSCollections (GS) [7] 6.2.0
yes FastList UnifiedMap UnifiedSet
– IntArrayList(p) IntIntHashMap(p) IntHashSet(p)

Trove (Tr) [6] 3.0.3
yes THashMap THashSet
– TIntArrayList(p) TIntIntHashMap(p) TIntHashSet(p)

in the setup phase, we evaluate the collections under the
following scenarios:

• populate: add N random elements into an empty col-
lection.

• iterate: iterate through all elements of C.

• contains: check whether C contains an existing ran-
dom element.

• add : add a random element to C. To keep C with the
same size throughout the experiment, we remove the
added element at the end of the scenario.

• get : get a random existing element from C.

• remove: find and remove a random element from C.
Analogously to add, we add the removed element in C
at the end of the scenario.

• copy : copy C into an empty collection using the copy
constructor.

We could not obtain the size of collections through static
code analysis. To compensate for this fact and to account
for various scenarios, we run our benchmarks with multiple
values for N ranging from 100 to 1M, with the interval set
as a power of ten (five categories of size).

In summary, we perform a factorial experiment [17] with
three element types and five collection sizes, in a total of 15
different configurations. This 15-configuration experiment is
run through the seven scenarios for each of the 33 collection
types (see Table 3). We execute a total of 3,465 experiments,
where each experiment lasts five minutes including replica-
tions and forks. Running the full benchmark takes 12 days
to finish.

We conduct our experiments on a machine with a E5-1660
3.3GHz CPU, 64GB RAM using Linux 3.16.0-53. We use 64-
bits JVM HotSpot, and the jdk1.8.0 65 as our Java version.
All tests were executed in a single-threaded environment, as
our target collections were built for such settings.

5. RESULTS
Our goal is to find a superior alternative that can out-

perform JCF in terms of execution time and/or memory
consumption in several scenarios, while introducing no or
minimal penalties in others. To achieve this, we ask the
following research questions:

RQ1. Does the type of elements stored in collections influ-
ence execution time?

RQ2. Are there superior alternatives to the most used JCF
collections with regard to execution time?

RQ3. Do primitive collections perform better than JCF col-
lections with regard to execution time?

RQ4. Are there superior alternatives to the most used JCF
collections with regard to memory consumption?

RQ1 addresses the impact of element type in the exe-
cution time of collections; RQ2 and RQ3 show the anal-
ysis of alternative object and primitive-collections on exe-
cution time; RQ4 reports superior object-collection alter-
natives on memory consumption. We omit the analysis of
primitive-collections on memory consumption, as this ques-
tion is rather well-explored and exemplified in Section 2.

RQ1. Does the type of elements stored in col-
lections influence execution time?

Key result: The element type has a significant influence
in the execution time in all major collection abstractions.
For lists, however, this impact is homogeneous through-
out all implementations.

We analyze the impact of the element type in the object-
collections execution time to verify whether our results can
be generalized beyond the types evaluated. We use the
ANOVA method [17], with a 95% confidence interval and
analyze the influence of element type on lists, sets and maps.

The element type influences execution time significantly
in our three main categories (p < 0.05). For lists, however,
the element type factor does not interact with the list im-
plementation (p = 0.76), indicating that it influences the
performance regardless of the list type. Thus, we expect
that our results for lists can be generalized beyond the type
used. We report the results for sets and maps only for the
String element type as it represents the largest amount of
collection instantiations.

Libs populate iterate contains add get remove copy
FU

1 4 4 4 3 3

GS
1 1

HP
1 6 7 14 14 9

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Libs populate iterate contains add get remove copy

FU
1 1 1 1 1 0

-4 -4 -4 -3 -3

GS
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

HP
1 2 2 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0 0 -1 -1 -1 0

-6 -7 -14-14 -9
100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(a) ArrayList alternatives

Libs populate iterate contains add get remove copy
FU

1 1 1 1 1 1 2 1 2 1

GS
1 1 1 1 1 2 3 2 1

Gu
3 2 2 2 2 7 10 7 8 7 1 1 1 1 1 3 2 2 3 2 2 2 2 1 1 2 2 2 3 2 9 10 9 13 9

HP
2 2 1 2 2 2 2

Ko
2 6 4 4 2 3 3 2 1 1 1 2 3 3 1 1 1 1 1 1 1 2 3 3 1 2 11 13 15 4 0 0 0 0 0

Tr
3 2 2 1 1 7 9 5 4 3 1 1 1 1 1 3 2 2 3 2 1 1 1 1 1 2 2 2 1 1 4 4 6 5 7

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Libs populate iterate contains add get remove copy
FU

0 -1 -1 0 1 -1 -2 -1 0 1 -1 0 0 0 1 0 0 0 0 -1 -1 0 0 0 0 -1 -1 -1 -1 0 -1 -1 -1 -2 -1

GS
-1 -1 -1 -1 0 -2

-3
-2 -1 0 -1 0 -1 0 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 1 0 -1 -1 -1 -1

Gu -3
-2 -2 -2 -2

-7 -9 -7 -8 -7
0 0 -1 0 0

-3
-2 -2

-3
-2 -2 -2 -2 -1 0 -2 -2 -2

-3
-2 -9 -10 -9 -13 -9

HP
-2 -2 -1 -1 0 -1 -1 0 0 1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 -1 -1 -1 0 -1 -2 -2 -2 -2

Ko
-2

-6 -4 -4 -2 -3 -3
-2 -1 1 -1 -2

-3 -3
-1 0 -1 -1 -1 -1 -1 -2

-3 -3
-1 -2

-11-13-15 -4 4 6 9 11 11

Tr -3
-2 -2 -1 -1

-7 -9 -5 -4 -3
1 1 1 1 2

-3
-2 -2

-3
-2 0 1 1 1 2 -2 -2 -2 -1 -1 -4 -4 -6 -5 -7

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(b) HashMap alternatives (element type = String)

Libs populate iterate contains add get remove copy
JCF

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

FU
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

GS
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

HP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Libs populate iterate contains add get remove copy
JCF

-1 0 0 0 0 0 0 0 1 1 2 2 2 2

3
1 0 0 1 0

* * * * *
1

4 6 3
2

11 12 16 11 12

FU
0 1 1 0 0 0 0 0 1 1 2 2 2 2

3
1 1 1 1 1

* * * * *
1

4 6 3
2

3 3 4 3 4

GS
0 1 1 0 0 0 0 0 1 1 2 2 2 2

3
1 1 1 1 1

* * * * *
1

4 6 3
2

10 13 16 12 12

HP
1 2 2 1 2 0 0 -1 -1 0 1 2 2 2 2 2 1 1 1 1

* * * * *
1

3 6 3
2 2 2 1 -1 1

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(c) ArrayList alternatives to LinkedList

Libs populate iterate contains add remove copy
FU

1 1 1 1 2 1 0 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 1

GS
1 1 1 1 2 1 0 1

Gu
1 1 1 1 1 2 1 2 2 1

HP
2 2 1 1 2 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

Ko
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 0 0 0 0

Tr
2 2 2 1 2 2 2 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 1 2 1 2 2 1 2

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

populate iterate contains add remove copy
FU

0 -1 -1 0 -2 1 2 2 1

3
0 0 0 1 1 0 0 -2 0 0 0 -1 -1 1 1 2 1 0 2 1

GS
-1 -1 0 0 -2 -1 1 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 1 2 1

Gu
0 0 0 0 -1 -2 0 -1 -1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 -2 -2 0

HP
-2 -2 -1 0 -2 0 2 1 0

3
0 0 0 1 1 0 0 -2 0 0 0 -1 -2 1 0 1 -1 -1 1 0

Ko
0 0 0 1 0 0 2 2 1

3
0 0 0 1 1 0 0 -2 0 0 0 -1 -1 1 1

13 16 29 29 51

Tr
-2 -2 -2 0 -2 -2 -2 0 0 2 0 0 0 0 1 -2 -2 -2 -2 -2 -2 -2 -2 -1 -2 0 -2 -2 1 -2

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(d) HashSet alternatives (element type = String)

Speedup

1

> + 2x

1

+ 1.5x

1

--

2

- 1.5

2

> - 2x

Figure 5: Heatmap showing speedup/slowdown (as defined in Equation 1) of alternative collections compared
to JCF, per scenario and size. Green cells indicate a speedup, red cells represent a slowdown. Performance
ratios larger than factor 2x are rounded to the nearest integer and printed inside the cell. LinkedList get
ratios are substantially higher and not shown.

0

0.4

0.8

1.2

100 1000 10000 100000 1000000

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

JCF FU HP GS

Array List populate

(a) populate

0

4

8

12

16

20

100 1000 10000 100000 1000000

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

JCF FU HP GS

ArrayList - copy

(b) copy

Figure 6: Execution time profiles of Array Lists for
the populate and copy scenarios.

RQ2. Are there superior alternatives to the most
used JCF collections with regard to execution
time?

Key result: GSCollections provides a superior alterna-
tive to JCF ArrayList. LinkedList is outperformed by
any other ArrayList implementation, and both the Hash-
Set of Koloboke and Fastutil are a solid improvement
over the standard one. We found no superior alternative
to the JCF HashMap, which provides a stable and fast
implementation throughout all the scenarios.

We report our results as a comparison to the JCF im-
plementation instead of the absolute performance. First,
we extract only comparisons where the errors (99% confi-
dence interval) do not overlap. Then we calculate the im-
pact of an alternative collection over JCF using the following
speedup/slowdown S definitions:

S =

Tjcf

Talt
, if Tjcf > Talt

− Talt

Tjcf
, otherwise

(1)

where Tjcf and Talt are the time obtained with using the
JCF implementation and the time using an alternative im-
plementation respectively.

We present our results in a broad heatmap analysis in
Figure 5, labeled by color. We make an in-depth analysis
for each category in the remainder of the section.

Linked List - addAll

0

0.25

0.5

0.75

1

1.25

1.5

100 1000 10000 100000 1000000

LI
N

K
ED

LI
ST

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

LinkedList JCF ArrayList JCF ArrayList GS

(a) populate

Linked List - remove

0

0.25

0.5

0.75

1

1.25

1.5

100 1000 10000 100000 1000000

LI
N

K
ED

LI
ST

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

LinkedList JCF ArrayList JCF ArrayList GS

(b) remove

Figure 7: Execution time profiles of LinkedList for
populate and remove scenarios.

ArrayList. In the populate scenario occurrences of JCF Ar-
rayList can be replaced by the implementation from GSCol-
lections to achieve faster population without compromising
the speed of any other operation. In fact, all evaluated al-
ternatives are faster than JCF when populating the list (see
Figure 6.) The HPPC implementation is, however, slower
when iterating the elements in both the iterate and the con-
tains scenario. In addition, both Fastutil and HPPC copy
their lists from 3 to 14 times more slowly.

LinkedList. JCF LinkedList is outperformed by all ArrayList
implementations by a large margin, even in scenarios where
LinkedList has a theoretical advantage (Figure 7). This
is the case for the remove scenario, where we search and
remove the element through the remove(Object) method.
Despite the asymptotic advantage, LinkedList was outper-
formed by a large margin forN ≥ 1k. Furthermore, LinkedList
has a comparable performance in the populate scenario, even
without having to reallocate its buffer (as ArrayList does).
The LinkedList is up to three times slower when searching
for a random element (N = 1M), and it was also outper-
formed in the iteration scenario by some ArrayList variants,
but only for N > 10k. Note that in our benchmark design
the LinkedList is unfragmented as the elements are inserted
without any removal. Hence, we consider these results a
best-case scenario for LinkedList.

HashMap. JCF HashMap provides solid performance and
cannot be easily replaced by any alternative in terms of ex-

HashSet iterate

0

0.25

0.5

0.75

1

1.25

100 1000 10000 100000 1000000

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

JCF FU Ko

(a) iterate

HashSet copy

0

0.25

0.5

0.75

1

1.25

100 1000 10000 100000 1000000

JC
F

N
O

R
M

A
LI

ZE
D

 T
IM

E

N

JCF FU Ko

(b) copy

Figure 8: Execution time profiles of HashSets hold-
ing String elements for the iterate and copy scenar-
ios.

ecution time improvement. As shown in Figure 5, some
implementations have a comparable performance, like Fas-
tutil, GSCollections and HPPC. Standard HashMap is out-
performed only in the copy scenario, where Koloboke is able
to copy up to 11x faster. However, Koloboke is substantially
slower in most of the other remaining scenarios.

HashSet. Standard HashSet is outperformed by many al-
ternatives, mostly in the iterate and copy scenarios (Fig-
ure 8). Koloboke is a superior alternative to JCF, outper-
forming JCF HashSet for large set iteration, and copying at
least 10x faster. Fastutil and GSCollections can also be se-
lected as good alternatives: both are slower when populating
but faster in the copy and and iterate scenarios. The JCF
implementation is faster than the majority of alternatives
when adding elements to the set, but is often outperformed
in the remaining scenarios for large workloads (N > 100k).

RQ3. Do primitive collections perform better
than JCF collections with regard to execution
time?

Key Result: For all three abstraction types (list, map,
set) we found a set of primitive implementations that
are superior to JCF implementations. GSCollections
and Koloboke provide the fastest primitive-based alter-
natives, followed by Fastutil and HPPC. Trove is often
outperformed by JCF implementations in this context.

Our results for analyzing the experiments are summarized
in a colored heatmap in Figure 9.

Primitive ArrayList. Primitive lists provide a superior al-
ternative to JCF ArrayList (Figure 9a). The speedup in
some cases reaches four times better than the baseline when
checking or removing an element from the list. GSCollec-
tions consistently outperforms the JCF, followed by Fastu-
til, which is slightly slower when iterating through the list.
HPPC and Trove are much slower when copying their lists,
and should be avoided if the workload demands this opera-
tion often.

Primitive HashMap. As a consequence of the standard
JCF HashMap’s good performance, in some scenarios there
is no underlying benefit gained from changing to a primitive-
type map implementation (Figure 9b). Iterations are espe-
cially good with the standard HashMap, up to five times
faster than the alternatives. For the contains, add, get and
remove scenarios, most primitive implementations can pro-

Libs populate iterate contains add get remove copy

FU
0 0 0 0 0 2 2 2 1 2 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1

GS
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

HP
1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 5 7 8 9 7

Tr
0

0 0 0 0 1 0 0 0 3 8 9 7 4

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Libs populate iterate contains add get remove copy

FU 3 3 3
2 2 -2 -2 -2 -1 -2 1 2

3 3 3
0 1 1 0 0 0 0 0 0 0 1 2

3 4 3
0 0 0 0 0

GS 3 3 3
2 2 1 1 1 1 1 2 2

3 3 4
0 0 1 0 0 0 0 0 0 0 1 2 2

3 3
0 0 0 0 0

HP
2 1 2 2 2 1 1 1 1 2 1 2

3 3 3
1 1 1 1 1 0 0 0 0 0 1 2

3 4 3 -5 -7 -8 -9 -7

Tr 3 3 3
2 2 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 2 2

4 3 -3 -8 -9 -7 -4
100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(a) ArrayList primitive alternatives

Libs populate iterate contains add get remove copy

FU
1 1 1 1 0 4 4 4 4 2 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 2 2 2 3 1

GS
1 1 1 1 0 3 2 5 4 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0

HP
3 2 1 1 0 2 2 3 3 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 2 3 3 4 2

Ko
1 1 1 1 0 2 2 3 3 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0

Tr
2 2 2 1 1 3 3 4 3 2 1 1 1 1 0 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 4 3 4 4 3

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Libs populate iterate contains add get remove copy

FU
-1 1 0 -1 3

-4 -4 -4 -4
-2 0 1 2 2

5
1 1 2 2

4
0 1 1 2

3
0 0 0 1 2 -2 -2 -2

-3
-1

GS
-1 1 0 0 3

-3 -2 -5 -4
-2 -1 1 2 2

3
1 1 1 0 1 0 1 2 2

3
1 1 2 1 2 2

4
2 2

6
HP -3

-2 -1 -1 2 -2 -2

-3 -3
-2 0 1 1 2

4
1 1 1 1 2 0 1 1 2 2 -1 -1 0 1 2 -2

-3 -3 -4
-2

Ko
-1 2 1 0 3 -2 -2

-3 -3
-2 0 1 2 2

3
1 1 1 1 2 0 1 1 2

3
-1 0 0 1 2 2

4 5
2

4
Tr

-2 -2 -2 -1 1

-3 -3 -4 -3
-2 -1 0 1 1

3
-2 -2 -2 -2 1 -1 0 1 1 2 -2 -2 -2 -2 1

-4 -3 -4 -4 -3
100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

(b) HashMap primitive alternatives

Libs populate iterate contains add remove copy
FU

1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0

GS
1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Tr
1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 2 2 2 2 1 1 2 1 1 0 2 3 2 2 1

HP
2 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

Ko
1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Improvement

1

> + 100%

1

+ 50%

1

0%

2

- 50%

2

> - 100%

Libs populate iterate contains add remove copy
FU

1 2 1 2

3
-1 1 1 0

3
0 0 1 1 2 1 0 0 0 1 1 0 0 1 2 2

3
2 1

3
GS

1 2 0 2

4
1 2 1 1

4
0 0 1 1

4
0 -1 0 -1 2 1 0 2 2

4 9 27151533
Tr

-1 -1 0 2 2 -1 1 1 1

3
0 0 1 1 2 -2 -2 -2 -2 1 -1 -2 -1 -1 2 -2

-3
-2 -2 -1

HP
-2 -1 1 1

3
1 2 2 1

4
1 1 1 2

4
1 0 1 1

3
1 0 0 2

4
2 0 1 0 2

Ko
1 2 2 2

4
-1 1 1 1

3
1 0 1 1 2 1 0 1 1 2 0 0 0 1

3 3 7 3
2

7
100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M 100 1K 10K 100K 1M

Speedup

1

> + 2x

1

+ 1.5x

1

--

2

- 1.5x

2

> - 2x

(c) HashSet primitive alternatives

Figure 9: Heatmap showing the speedup/slowdown
(Equation 1) of primitive collections (int) compared
to the JCF collections holding Integers, per scenario
and workload.

vide an improvement. When also considering the copy sce-
nario, GSCollections and Koloboke provide the highest per-
formance gain among the alternatives.

Primitive HashSet. Primitive-based sets can be beneficial
for the application’s performance when it comes to a large
number of elements (Figure 9c). In fact, the speedup com-
monly reaches four times as fast across many scenarios with
N = 1M . GSCollections, Fastutil and Koloboke provide
superior alternatives and can copy their instances up to
27 times faster. HPPC is also a good alternative but it
does not provide the same copy operation speed gain as the
other mentioned libraries. Trove’s implementation was the
only primitive-based HashSet outperformed by the standard
HashSet in the add, remove and copy scenarios.

RQ4. Are there superior alternatives to the most
used JCF collections with regard to memory
consumption?

Key result: We found no superior alternative to the
JCF ArrayList in terms of memory overhead, but Fastu-
til allocates less memory when populating its own list im-
plementation. Numerous alternatives offer a superior al-
ternative to the JCF HashMap and HashSet. LinkedList
has a higher overhead than any considered ArrayList al-
ternative.

In this section, we analyze the difference in the overhead
of collections as the main goal for a superior collection re-
placement. As a supplementary analysis, we also looked at
an aspect often neglected by micro-benchmarks: memory
allocation. A collection that allocates more memory than
indicated by its overhead requests memory for two reasons:
(i) allocation as a buffer for future operations, (ii) alloca-
tion for temporary objects. The latter reason has a negative
impact on performance and can be used as an indicator of
how often a collection implementation can trigger the action

Table 4: Comparison of collection overhead and
memory allocation of various implementations. The
overhead is given in bytes in the form α×N+β, where
N is the number of elements in the collection, and
α and β are implementation-specific factors. The
average allocated is given in bytes per element.

Category Libs
Collection Avg Allocated
Overhead populate copy

Array
Lists

JCF 4 ×N + 24 14.83 4.01
Fu 4 ×N + 24 10.07 4.02
GS 4 ×N + 24 13.56 4.01
HP 4 ×N + 48 15.10 4.01

Linked
List

JCF 24 ×N + 32 24.07 28.11

Hash
Maps

JCF 36 ×N + 48 49.93 41.05
Fu 8 ×N + 64 35.52 42.18
GS 8 ×N + 64 59.87 24.62
Gu 96 ×N + 64 96.90 132.36
HP 8 ×N + 96 36.41 18.16
Ko 8 ×N + 232 35.47 17.96
Tr 8 ×N + 72 47.23 18.37

Hash
Sets

JCF 36 ×N + 80 48.85 40.43
Fu 4 ×N + 40 24.43 8.43
GS 4 ×N + 32 34.44 14.21
Gu 52 ×N + 112 64.77 58.25
HP 4 ×N + 88 16.88 8.43
Ko 4 ×N + 208 16.84 8.43
Tr 4 ×N + 64 22.25 8.35

of the Garbage Collector (GC). Collections that require fre-
quent intervention of the GC can reduce the performance of
an application in a long run, a behavior difficult to observe
with micro-benchmarks.

Since the elements are pre-allocated in the setup phase,
memory allocation only comes into play when elements are
added to the collection, namely by populate and copy oper-
ations.

ArrayList. All implementations have a similar overhead (see
Table 4). Due to its buffer reallocation, each implementa-
tion allocates on average three times its own overhead in the
populate scenario. Regarding only memory allocation, Fas-
tutil can be a good alternative, saving 30% of allocations in
the populate scenario.

LinkedList. We show in Table 4 that the standard LinkedList
implementation has an overhead of 24 bytes per element, as
opposed to the 4 bytes required in each ArrayList implemen-
tation. This is a consequence of the pointers to neighbor el-
ements for each LinkedList entry. Essentially, an ArrayList
saves 83% of the memory overhead. Despite the buffer ex-
pansion of ArrayList, LinkedList still allocates twice as much
memory in the populate scenario, and it allocates five times
more memory when copying from a previous instance.

HashMap. We can observe in Table 4 that the JCF im-
plementation has a considerably higher overhead. Standard
HashMap has an overhead of 36 bytes per each entry in the
map while almost every other alternative consumes only 8
bytes. This difference occurs because JCF uses a Node ob-
ject for each entry, a structure that contains three references
(12 bytes) and a primitive (4 bytes), but, being an object,
also has an overhead of 12 bytes of header and 4 bytes lost
due to alignment. The alternatives do not define each entry

as an object and instead use two arrays where each key and
value pair are stored. As a consequence, they save 77% of
memory overhead. Regarding allocations however, the dif-
ference of JCF and the alternatives are not quite as drastic
as in the collection overhead. This means that even though
the alternatives have five times less overhead, the memory
involved in the map operations is of a similar size.

HashSet. Similarly to Maps, JCF HashSet is implemented
with a larger overhead than almost any of the potential al-
ternatives. In fact, it uses a HashMap internally to store the
elements, causing the same additional overhead of 36 bytes
per element, due to the HashMap’s Node object. The al-
ternatives, on the other hand, implement the HashSet as a
simple single array. This allows them to save 88% of memory
overhead compared to the JCF HashSet. Unlike HashMap,
this difference holds in the memory allocation as well, where
JCF allocates twice as much memory in the populate and five
times as much memory in the copy scenario.

6. DISCUSSION

6.1 Guideline for Collection Replacement
Each additional alternative collection implementation used

in a software project increases its complexity and mainte-
nance effort. Consequently, developers should consider re-
placing collection implementations only if such a change will
result in a significant benefit. In order to support program-
mers in such decisions, we present a guideline (Table 5)
showing the potential benefits and drawbacks of using alter-
native implementations for several relevant scenarios and/or
optimization objectives.

We illustrate the effect of JCF collection replacement on
execution time for collections with one thousand (small) and
one million elements (large). Note that in case of object
collections the memory savings come solely from a reduced
overhead as the elements themselves are not modified. In
case of the primitive collections the programmer must re-
place the object element type by its respective primitive.
However, the impact on memory savings is higher as the
memory footprint of elements is reduced as well.

Table 5 presents seven recommendations for replacements
leading to a substantial improvements. Recommendation
R1 describes the replacement of a LinkedList by an Ar-
rayList from one of three libraries, each offering a consis-
tent improvement in time and memory. In R2 we recom-
mend Koloboke’s alternative to JCF HashSet, as it provides
a substantial improvement on execution time and memory
overhead. For HashMaps it is possible to aim for a mem-
ory overhead reduction with a small execution time penalty
(R3), or to reduce memory and improve the execution time
of copy operations (R4).

An important result is the universal superiority of primi-
tive collections. It is possible to considerably improve both
memory footprint (overhead + elements) and execution time
for all three major collections: ArrayList (R5), HashSet (R6)
and HashMap (R7). Note that in all cases the replacement
is particularly beneficial for large collections as the savings
of memory and execution time are, in general, bigger.

6.2 Reasons for Performance Differences
Our investigation of the source code of collections revealed

some implementation patterns responsible for performance

Table 5: A guideline showing the impact of replacing JCF collections with alternative collection implemen-
tations for some relevant scenarios/optimization objectives. For primitive collections, the memory savings
include overhead reduction as well as smaller element footprint (results assume replacing Integer objects by
the primitive int).

Overhead Speedup/Slowdown
Savings 1k elements 1M elements

To reduce JCF LinkedList overhead and improve time performance

R1) Replace it by JCF/Fasutils/GSCollections ArrayList
84%

12x

+2x contains

+4x remove

+12x/+3x/+13x copy12x 12x

+3x contains

+2x remove

+4x/+2x+4x copy12x

To reduce JCF HashSet overhead and improve time performance

R2) Replace it by Koloboke HashSet
88%

12x

+1.5x iterate

-1.5x remove

+16x copy12x 12x

+3x iterate

+1.5x contains

+51x copy12x

To reduce JCF HashMap overhead with smallest time penalty

R3) Replace it by GSCollections/Fastutils HashMap
78%

-1.5x populate

-1.5x/-3x iterate

-1.5x copy -1.5x copy

To reduce JCF HashMap overhead and improve copy performance

R4) Replace it by Koloboke HashMap
78%

+6x copy

-6x populate

-11x remove

+11x copy

-2x populate

-4x remove

Footprint Speedup/Slowdown
Savings 1k elements 1M elements

To reduce JCF collections footprint and improve time performance

R5) Replace ArrayList by GSCollections primitive-collection 60%

12x

+3x populate

+2x contains

+2x remove12x 12x

+2x populate

+4x contains

+2x remove12x

R6) Replace HashMap by GSCollections/Koloboke primitive-collection
76%

12x

+1.5x/2x populate

-2x iterate

+2x remove12x 12x

+2x populate

-2x iterate

+6x/+4x copy12x

R7) Replace HashSet by GSCollections/Koloboke primitive-collection
84%

12x

+2x populate

+2x/+1.5x iterate

+27x/7x copy12x 12x

+4x populate

+4x/+3x iterate

+33x/+7x copy12x

differences in collections. We discuss these in the following.

Distinct API calls. The implementations often differ in us-
age of the API call for copying an array. Here two meth-
ods are used: System.arraycopy() and Arrays.copyOf().
The latter is just a wrapper for System.arraycopy() which
requires only the original array, as opposed to the System
version, where the target must be passed as a parameter.
Our experiments showed that System.arraycopy() is 25%
faster than Arrays.copyOf() for arrays up to 1 million el-
ements. This is one of the reasons why GSCollections Ar-
rayList (which calls System.arraycopy()) is faster than JCF
counterpart, since populate scenario is dominated by the
buffer expansion cost.

Add copy versus Memory Copy. Collections copy is the
scenario with the largest discrepancy in performance of our
experiments. We found that libraries implement two main
approaches: they either add all elements one by one to a
new created collection instance, or they perform a memory
copy. Needless to say, the memory copy is faster as adding
elements one by one has the burden of manipulating objects
individually. This explains why Koloboke executes up to 50x
faster than JCF when copying a set with 1 million elements.

Nevertheless, libraries often opt for adding the elements
into the new instance for the simplicity of the workflow. The
copy constructor receives a collection reference as a parame-
ter and must be able to polymorphically handle all kinds of

collection types. A memory copy is restricted only to copies
from the same type. GSCollections and JCF use memory
copy for ArrayLists but rely on addAll for HashSet and
HashMap. Koloboke is the only library that use memory
copy for HashSet/HashMap. It is important to address that
copy is called 11% of the HashSet instantiations. Therefore
applications can strongly benefit from memory copy imple-
mentation.

Sub-optimal primitive API. Iterating elements of FastList’s
ArrayList primitive collection is slower than JCF ArrayList,
and far more time-consuming than any other primitive im-
plementation. To understand this, note that each primitive
library provides a forEach(IntProcedure) method to iter-
ate and process the list. However, FastList provides a forE-

ach() method defined by JCF AbstractCollection, which
accepts an Object and implicitly converts each primitive
to its wrapper, degrading the performance by a factor of
5x. This case illustrates the complexity of a collection API,
which often provides multiple ways of performing the same
task, but with distinct performance costs.

Sub-optimal loop implementation. The contains() method
of Trove primitive ArrayList is 3 times slower than any other
primitive implementation (see Fig 9a). The code inspection
reveals that contrary to other primitive alternatives, Trove
defined the array loop using an unconventional for loop,
namely for (int i = offset; i- > 0;). This loop, al-

beit correct, produces three times more branches and 30%
more branch misses than a backwards loop defined with the
decrement in third position of the for-statement. In fact,
after refactoring the contains()-method in an obvious way
in our own extension of Trove’s primitive ArrayList the per-
formance bottleneck was fixed.

6.3 Threats to Validity
There are several issues that may affect the validity of

our work. As a benchmark study, our results are subject
to a number of external factors. Even though we mitigate
their influence with our methodology (see Section 4), the
hardware specs may have an impact on collections time per-
formance [11]. In particular, the speedup/slowdown indica-
tors might be biased towards our test machine configuration.
The memory footprint results, however, can be generalized
beyond the hardware specification.

We try to reuse the same code to provide a homogeneous
benchmark for the different collection libraries. Some im-
plementations are not JCF compliant though, e.g. HPPC
implementations and most primitive collections. For those
cases we carefully adapt our code to their respective API,
introducing only subtle code differences. Still, this may im-
pact time performance of evaluated collections.

Lastly, we do not consider workloads with a convoluted
set of operations. For such workloads, the memory overhead
and execution time can be impacted by complex interactions
among operations. Such workloads are harder to generalize
though. That is why we based our micro-benchmark on
single operations so that a useful guideline can be derived
from the results.

7. RELATED WORK
There is a substantial body of research devoted to under-

standing the impact of collections on code performance.

Empirical Studies of Java Collections. To the best of
our knowledge our evaluation is the most comprehensive
study of the space and time profiles of alternative collec-
tion implementations in Java. However, the benchmarks we
evaluated partially cover some aspects featured in our ex-
periments. In [25] the author evaluates different HashMaps
libraries in more convoluted scenarios. Lewis [15] compares
JCF implementations and suggests a new collection for a
specific GUI update scenario. Another interesting paper [14]
exemplifies the time and memory trade-offs of HashMaps.
Our work differs from these in some key aspects. First, we
evaluate a wider range of implementations, presenting the
performance profile of lists, sets and maps, including primi-
tive alternatives, while those works focus more commonly on
HashMap alternatives. Second, we based our experimental
planning on patterns found on real code (Section 3). This
allows us to evaluate scenarios more commonly adopted by
developers in real applications, and provide more representa-
tive results. Lastly, we investigate and report some patterns
in real code that explain some performance differences, an
aspect rarely explored in the benchmarks we have found.

More recently, some works have studied the collections se-
lection problem in relation to energy consumption of appli-
cations [10]. In particular, Hasam [9] presented an inspiring
work which experimentally explores the impact of collections
on energy consumption and concludes that some implemen-
tations can increase the energy usage of an application up

to 300%. Their work does not consider time/memory pro-
file as we do, and we believe that time, memory and energy
consumption profiles can be combined to give programmers
a more complete view of collections performance.

Collection inefficiencies. Several authors have designed
methods to detect collection inefficiencies. Xu et al, [28]
use both static and dynamic analysis to detect overpopu-
lated and underutilized collections. Yang et al, [29] tracks
and records the containers and the flow of its elements,
and uses an offline analysis to pinpoint some inefficiencies.
Those works target performance problems related to collec-
tion without exploring the effect of different collection types.
Thus the authors attempt to solve an orthogonal problem
to collection selection.

Performance optimization by collection replacement.
Recently, several studies have attempted to advise develop-
ers on selecting collection abstraction type which improves
the performance in a context-dependent way. Shacham et
al., [23] optimizes applications by monitoring and replacing
the collections types using a user-defined model. Coco [26]
also utilizes a user defined model to replace the collections
at runtime. Both works differ from our approach as they
deploy solely asymptotic analysis to select the most suitable
collection type, without accounting for the real performance
profile. Consequently, the authors do not consider alterna-
tive collection libraries, and focus only on JCF.

The approach of Brainy [11] is most closely related to our
work. Brainy is a C++ framework which generates a large
amount of synthetic applications, models their performance
via machine learning, and suggests appropriate collection
replacements. This framework does not consider alterna-
tive implementations, but rather, focuses on a set of specific
cross-abstraction transformations which might be difficult to
apply to real code. Our work targets understanding the per-
formance of alternative libraries, and we provide a guideline
for replacing collection implementations for scenarios with a
high impact on performance.

8. CONCLUSIONS AND FUTURE WORK
We analyzed usage patterns of collections by mining a

code corpus of 10,986 Java projects and found that even
in high-quality code, the usage of alternative collections li-
braries is rare. To investigate the potential for performance
improvement in Java applications with only moderate pro-
gramming effort, we have conducted a rigorous performance
evaluation study of the standard Java Collection Framework
and six most popular alternative collection libraries. We
found that such alternative libraries can offer a programmer
a significant reduction of both execution time and memory
consumption.

We summarized the impact of collection replacement on
runtime improvements and memory savings for some rele-
vant scenarios. The resulting guideline assists programmers
in deciding whether in a given setting an alternative imple-
mentation can offer a substantial performance improvement,
and if so, which implementation should be used. Some of
these replacements are easy to automate and can improve
the performance profile of collections through simple code
refactoring.

As future work, we target implementation of such auto-

mated refactoring tools. We also intend to evaluate our
recommendations in more complex scenarios, including a
study of their performance impact in large, mature software
projects.

9. REFERENCES
[1] M. Allamanis and C. Sutton. Mining source code

repositories at massive scale using language modeling.
In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages
207–216, Piscataway, NJ, USA, 2013. IEEE Press.

[2] Chronicle. Koloboke. http:
//chronicle.software/products/koloboke-collections/,
Oct. 2015.

[3] A. Georges, D. Buytaert, and L. Eeckhout.
Statistically rigorous java performance evaluation.
SIGPLAN Not., 42(10):57–76, Oct. 2007.

[4] A. Georges, L. Eeckhout, and D. Buytaert. Java
performance evaluation through rigorous replay
compilation. SIGPLAN Not., 43(10):367–384, Oct.
2008.

[5] J. Y. Gil and Y. Shimron. Smaller footprint for java
collections. In Proceedings of the ACM International
Conference Companion on Object Oriented
Programming Systems Languages and Applications
Companion, OOPSLA ’11, pages 191–192, New York,
NY, USA, 2011. ACM.

[6] GNU Trove. Trove.
http://trove.starlight-systems.com/, May 2015.

[7] Goldman Sachs Group, Inc. GS Collections.
https://github.com/goldmansachs/gs-collections, June
2015.

[8] Google. Guava. https://github.com/google/guava,
Aug. 2014.

[9] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams,
and A. Hindle. Energy profiles of java collections
classes. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
225–236, New York, NY, USA, 2016. ACM.

[10] N. Hunt, P. S. Sandhu, and L. Ceze. Characterizing
the performance and energy efficiency of lock-free data
structures. In 2011 15th Workshop on Interaction
between Compilers and Computer Architectures, pages
63–70, Feb 2011.

[11] C. Jung, S. Rus, B. P. Railing, N. Clark, and
S. Pande. Brainy: Effective selection of data
structures. SIGPLAN Not., 46(6):86–97, June 2011.

[12] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining github. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014.
ACM.

[13] K. Kawachiya, K. Ogata, and T. Onodera. Analysis
and reduction of memory inefficiencies in java strings.
SIGPLAN Not., 43(10):385–402, Oct. 2008.

[14] R. Leventov. Time - Memory Tradeoff With the
Example of Java Maps. https:
//dzone.com/articles/time-memory-tradeoff-example.

[15] L. Lewis. Java Collection Performance. https:
//dzone.com/articles/java-collection-performance,
July 2011.

[16] N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. In Proceedings of the 22Nd Annual
ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07,
pages 245–260, New York, NY, USA, 2007. ACM.

[17] D. C. Montgomery. Design and Analysis of
Experiments. Wiley, Hoboken, NJ, 8 edition edition,
Apr. 2012.

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Evaluating the accuracy of java profilers. In
Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’10, pages 187–197, New York,
NY, USA, 2010. ACM.

[19] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan.
Mining preconditions of apis in large-scale code
corpus. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 166–177, New York,
NY, USA, 2014. ACM.

[20] Oracle. Java development kit.
https://www.oracle.com/java/index.html, Sept. 2015.

[21] S. Osiński and D. Weiss. HPPC: High Performance
Primitive Collections for Java.
http://labs.carrotsearch.com/hppc.html, Jan. 2015.

[22] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A
large scale study of programming languages and code
quality in github. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 155–165,
New York, NY, USA, 2014. ACM.

[23] O. Shacham, M. Vechev, and E. Yahav. Chameleon:
Adaptive selection of collections. In Proceedings of the
30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09,
pages 408–418, New York, NY, USA, 2009. ACM.

[24] S. Vigna. Fastutil. http://fastutil.di.unimi.it/l, Jan.
2016.

[25] M. Vorontsov. Large HashMap Overview. http://java-
performance.info/hashmap-overview-jdk-fastutil-
goldman-sachs-hppc-koloboke-trove-january-2015/,
Feb. 2015.

[26] G. Xu. Coco: Sound and adaptive replacement of java
collections. In Proceedings of the 27th European
Conference on Object-Oriented Programming,
ECOOP’13, pages 1–26, Berlin, Heidelberg, 2013.
Springer-Verlag.

[27] G. Xu and A. Rountev. Precise memory leak detection
for java software using container profiling. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 151–160, New
York, NY, USA, 2008. ACM.

[28] G. Xu and A. Rountev. Detecting inefficiently-used
containers to avoid bloat. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10,
pages 160–173, New York, NY, USA, 2010. ACM.

[29] S. Yang, D. Yan, G. Xu, and A. Rountev. Dynamic
analysis of inefficiently-used containers. In Proceedings
of the Ninth International Workshop on Dynamic
Analysis, WODA 2012, pages 30–35, New York, NY,
USA, 2012. ACM.

http://chronicle.software/products/koloboke-collections/
http://chronicle.software/products/koloboke-collections/
http://trove.starlight-systems.com/
https://github.com/goldmansachs/gs-collections
https://github.com/google/guava
https://dzone.com/articles/time-memory-tradeoff-example
https://dzone.com/articles/time-memory-tradeoff-example
https://dzone.com/articles/java-collection-performance
https://dzone.com/articles/java-collection-performance
https://www.oracle.com/java/index.html
http://labs.carrotsearch.com/hppc.html
http://fastutil.di.unimi.it/l
http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-trove-january-2015/
http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-trove-january-2015/
http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-trove-january-2015/

	Introduction
	Background
	Analysis of Collection Usage
	Data and Static Analysis
	Collections Usage in Real Code

	Experimental Design
	Selection of Collection Libraries
	Benchmark Design
	Experimental Planning

	Results
	Discussion
	Guideline for Collection Replacement
	Reasons for Performance Differences
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

