Effects of an Economic Approach for Test Case Selection and
Reduction for a Large Industrial Project

Thomas Bach
Institute of Computer Science
Heidelberg University
69120 Heidelberg, Germany
thomas.bach@stud.uni-heidelberg.de

Abstract—Extensive testing in large projects can lead
to tremendous test costs with superlinear growth over
time. Researchers have proposed several techniques
to tackle this problem. However, the practical effects
of these techniques on the asymptotic behaviour of
test costs growth in large industrial software projects
remains poorly characterized.

‘We introduce and analyse a fixed time budget for test
executions for SAP HANA, a large industrial project.
Our approach assigns a global fixed time budget to
several components. Each component can only execute
tests within its budget, which can change only by trans-
fers from other components. This limits the number of
test executions for each test run to a constant, thus
reducing the asymptotic growth of test costs.

Budget transfers and test optimizations adhere to
balances between value and costs, thus creating an
economic environment for test case selection and re-
duction. Specifically, this creates incentives to remove
unnecessary tests and to optimize test execution times.

For SAP HANA, our approach leads to effective test
case selection and reduction, and reduces test execution
times by 105 years in four months with a negligible
effect on quality. The trade-off between runtime savings
and failure detection is 1.83 years/failure.

I. INTRODUCTION

Software testing is a fundamental part of quality assur-
ance for software projects. Agile development processes,
continuous integration and short release cycles require
frequent automatic test runs to reduce the number of
defects and to prevent regressions during development.

Running automated software tests generates costs. Each
test run requires CPU time and CPU time translates
to hardware costs. The CPU time depends on the test
runtime, i.e. the duration between start of a test run until
all test executions finished and the results are processed. In
addition to the hardware costs, large test runtimes increase
waiting times for developers and can decrease productivity.
For the rest of the paper, we assume that test runtime
correlates with test executions and use it as a surrogate.

For small projects, the overhead in terms of test runtime
is rather small. Local test executions on developers’ work-
stations and frequent test runs on central machines (e.g.
for each commit) are common practice in smaller projects.
Due to the project size, the waiting times are acceptable.

Ralf Pannemans

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
ralf.pannemans@sap.com

Sascha Schwedes
SAP SE
Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
sascha.schwedes@sap.com

SAP SE

108 [T T T =

.......... Developers —.—.—. Commits TE - - -- TEpp

Tests

106 [

104 L

Number

102 /7

10° :
200
Time in Days

Figure 1. Model of test execution growth in logarithmic scale. The
number of developers (Developers) increases by one every seven days.
Each developer increases the number of existing tests (T'ests) by four
per day and the number of commits (Commits) by five code changes
per day, each initiating a test run. The number of test executions (T'E)
is equal to Tests * Commits and grows superlinearly over time due
to the linear increases of Tests and Commits. A fixed time budget
for test executions effectively limits the number of executed tests to
a constant c. Therefore, the number of test executions with a fixed
budget (T Erp) is equal to cx Commits and grows linearly over time.

For large projects, the overhead in terms of test runtime
grows significantly. Parallel test executions on a hard-
ware pool can reduce test runtimes. However, hardware
extensions are limited by resources in practice and cannot
sustainably solve the superlinear increase in test runtime.

Test runtimes increase superlinearly due to the typical
characteristics of large software projects that affect the
number of test executions T'E. T'E depends on two factors:
1) on the number of tests 7' that are executed, and 2) on
the frequency F' the tests are executed. T increases linearly
over time because developers add more tests but rarely
delete tests. F' increases linearly over time because a large
successful project has an increasing number of developers
who make changes to the central source code repository.
Each change initiates a new test run and thus increases
F'. The multiplication of the two linear factors T and F
lead to a superlinear increase for T'E over time. The model
of Figure 1 demonstrates this superlinear increase of TE.
After one year, 53 developers would have produced 39 004
tests, and create 265 code changes per day, resulting in
over 10 million test executions per day.

mailto:thomas.bach@stud.uni-heidelberg.de
mailto:ralf.pannemans@sap.com
mailto:sascha.schwedes@sap.com

7107 T T T T
6. 107|-| —— Test Executions .
55007 |— 10%7]
5 4.107F y
g 4 107
m>< 3107 |
© 21071 h
= 1-107) 8
ol |

| | | | | | | |
2010 2011 2012 2013 2014 2015 2016 2017

Years

Figure 2. SAP HANA test executions with a quadratic curve fit.
Logging contains all centralized automated test executions since 2010.

In addition to this general issue, there are at least two
other aspects with a considerable effect on test costs. Long
term projects as SAP HANA support multiple product
versions for their customers. The support of multiple
product versions requires parallel development and test

executions due to differences in features and code state.

The parallel test executions for multiple product versions
lead to an additional constant or potential linear factor of
test executions. Non-deterministic tests, often called flaky
tests [1], are a second aspect with a considerable effect on
test costs in large projects. Flaky tests increase costs for
all test stages due additional inspections and reruns for
misleading test results.

Overall, we expect that test executions and test costs
increase superlinearly in large projects. For SAP HANA,
Figure 2 confirms the superlinear growth for test executions
between 2010 and 2017. Section IV highlights other works
that confirm the superlinear growth.

The growing test costs problem has been addressed
by researchers and practitioners for decades: ‘Regression
testing can be expensive, and the need for cost-effective
techniques has helped it emerge as one of the most
extensively researched areas in testing over the past two
decades.[2] The approaches to tackle this problem can be
categorized in three groups: test case prioritization (TCP)
and selection (TCS), and test suite reduction (TSR).

TCP techniques reorder the execution order of tests to
maximize some objective function. For example, tests that
detect failures should run first. In the case of a detected
failure, all subsequent tests could be skipped until the
failure is fixed. Typically, most test runs finish without a

failure, therefore the potential cost savings are rather low.
TCS techniques select a subset of tests for each test run.

For example, only test cases relevant to some objective
function are selected for a test run. TSR techniques shrink
the test suite (i.e. test cases are removed). Therefore, the
potential cost savings for TCS and TSR techniques are
typically higher compared to TCS, but TCS and TSR
techniques have the potential disadvantage of a loss of
testing quality because not all tests are executed compared
to the full test suite.

For the development of SAP HANA, SAP adopted a
fixed time budget for test executions to reduce testing
costs. The fixed time budget implements TCS and TSR
techniques. Periodic test runs with all tests in later testing
stages prevent the potential loss of quality. We analyse
the first effects of this approach after four months. The
contributions of this paper are as follows:

o A fixed time budget for test executions can be an
effective approach for the problem of superlinear test
costs growth over time in a large software project.

o A fixed time budget for test executions can create in-
centives to improve test runtimes, scope, and priority
based on economic decisions of value and costs.

Section II introduces the testing environment of SAP
HANA and our fixed test budget approach. We describe
our approach in detail in Section II-B. Section III contains
our research questions, results and discussions. Section IV
briefly highlights related work. We conclude in Section V.

II. TESTING AT SAP HANA AND AN ECONOMIC
APPROACH FOR TEST CASE SELECTION / REDUCTION

We introduce the testing process of SAP HANA, the ap-
plication in focus of our analysis, a high-performance, par-
allel in-memory database management system developed
by SAP [3]. Previous work covers details of the testing
process and related problems [4]. Due to confidentiality
reasons, we cannot disclose all project details. We further
describe the fixed time budget for testing.

A. Testing of SAP HANA

Since many customers use SAP HANA in business-
critical scenarios, quality assurance of SAP HANA is of
paramount importance. SAP ensures this requirement via
extensive testing in all development and release stages.

Testing of SAP HANA contains several stages as shown
by Figure 3 and involves a Continuous Build (CB) envir-
onment. At the first stage, developers execute tests during
software development on their own workstation. This can
include manual tests, a subset of test suites from later
testing stages or developer specific test suites. The second
stage incorporates the CB environment to automatically
execute integration tests within the scope of a component.

Stage three includes the integration and regression test-
ing for all SAP HANA components and causes a majority
of the testing costs because of the superlinear cost increase
explained in Section I. Figure 2 shows the current trend of
test executions for SAP HANA. Stage three implements
pre-commit testing, i.e., a software change is only accepted
and merged into the repository if it passes all tests.

Within testing stage four, the CB system runs different
combinations and configurations of tests (test profiles) after
code changes have been submitted to the repository. The
execution frequency for these profiles reaches from several
times a day to once per release. Stage four includes long
running tests, randomized and stress testing, or recovery
testing like out of memory or crash tests. The test profile

Testing During Development

Component Testing

Integration Testing

A A

Continuous Testing

[]
| l
|)
l J
[Weekly Release Testing]
[)
[]
[)

saseal09(sawnuny
189 Jano | se paadg
asealou| adoog pue
‘@ouspe) ‘s}so 1s8 |

Customer Release Testing

Integration Testing with Fixed Budget

: Replaces
Daily Full Test Run

Figure 3. Simplified summary of test stages for SAP HANA. For the
implementation of our fixed test budget approach, we replace the (full)
integration testing stage with two new stages. The two new stages
consist of a test run with a fixed time budget for each code change
and a daily full test run. The fixed time budget for test executions
reduces the costs growth at the integration testing stage. The daily
test run ensures the same quality level as before the replacement.

for releases contains over 900000 single test cases and
would run for 23 days if executed sequentially on an average
server with 40 CPU cores, 3 GHz frequency, and 256 GiB of
RAM. Although SAP utilises a large hardware pool of test
servers in parallel mode, the test runtime is rather large.
Within the test suites of a database, it is not uncommon
to have long running, complex and distributed queries to
test database functionality. Performance and load tests
contribute to long running tests as well.

Whereas the stages one to four focus on SAP HANA
in an isolated environment, stage five and six are used for
end-to-end testing in the context of an end user application.
These stages contain automatic, but also manual tests that
are performed by other teams within the company and thus
decrease testing biases.

B. Fized Test Budget Approach

To limit the test runtime of the integration stage,
we introduced a fixed runtime budget for tests. More
specifically, each component receives an own test runtime
budget. Within the budget, the component team can select
the tests to run by their own criteria if the cumulative
runtime fits into the budget. Time budget can be shifted
between components to cope with changing priorities and
quality requirements within SAP HANA development.
These budget redistributions allow the component team
members to focus resources in areas of special interest.

There were several additional expectations based on the
incentives given by the optimization of value and costs:

o Tests with low bug finding abilities will move to later

testing stages (by manual or automatic techniques).

o Execution times for tests will be analysed and optim-

ised, especially for long running and distributed tests.

o Test scope will improve. A test suite for a component

should only include necessary tests for the quality
assurance of this component. This could require modi-
fications of the test suite or the component structure.

The implementation of our fixed time budget for test
executions requires the determination of an initial total
budget and the distribution of this budget to all compon-
ents. The analysis of several approaches revealed multiple
common drawbacks. The usage of empirical data about test
executions requires the determination of an appropriate
period of observation. A long period would not include
recent changes, a short period would not include long term
trends and a weighted mix would be rather complex to
understand by all developers. In addition, test ownership
is not well defined if multiple components use the same
tests in their component test suites.

Therefore, the initial time budget distribution depends
on the number of developers working per component.
The number of developers provides a rough estimation
of testing requirements. This is a simple model that
can be communicated without further explanations. After
the initial distribution, the possibility to transfer test
budgets between different components allows a flexible
redistribution of time budgets.

The component teams were responsible for the process
of test selection and reduction to fulfil the test budget
constraint for their respective component. To support the
component team members with test case selection and test
suite reduction, we created an extensive analysis of runtime
and failure rates for the tests contained in the integration
stage over the former half year. For example, we found
that 17 % of all tests within the old integration stage had
a failure rate less than 0.01 % and 11 % had no failure at all
for the observation time. The criteria for test selection and
reduction which were used by the component teams were
not evaluated. We expect a mix of domain knowledge and
empirical data. A future study could investigate if these
criteria could be utilized for an automated approach.

The introduction of a fixed time budget for integration
tests implies a possible reduction of test quality because
fewer tests are run. To counter this effect and ensure a
consistent quality level for further testing stages, a daily
test run contains the original set of integration tests. The
daily test run effectively moves the complete test run from
pre-commit to post-commit testing.

Altogether, the introduction of the fixed time budget
for the integration test stage changes the asymptotic
behaviour of the number of test executions T E over time.
Before the introduction, TE increased superlinearly over
time, as discussed in Section I. After the introduction, TE
increases only linearly over time on both new integration
test stages. For the integration testing with fixed budget,
the test budget limits the maximum runtime of tests. TF
depends on a fixed maximum runtime (i.e., a constant)
and a variable number of commits over time, resulting in a
linear growth for T'E over time. For the daily full test run,
the frequency is fixed. TE depends on a variable number
of tests over time and a fixed execution frequency (i.e., a
constant), resulting in a linear growth of TE over time.

III. RESULTS

We investigated the following research questions in the
context of the large-scale software project SAP HANA:
RQ1: Does the distribution of the fixed test budget for test

executions change over time?

RQ2: How did runtimes for integration tests change after
the introduction of the fixed time budget?

RQ3: How is the testing quality affected by the introduc-
tion of the fixed test budget for test executions in
terms of failures that pass the reduced test suite, but
appear in the full integration test suite?

RQ1 analyses whether the possibility to redistribute test
budget between components was used by the component
teams. This would indicate whether the economic aspect
of benefits and costs lead to re-prioritization of testing
efforts. RQ2 investigates the direct effects on developer pro-
cesses and hardware costs. This research question analyses
whether test execution times were reduced, one of the main
goals for the introduction of the fixed time budget. RQ3
analysis the impact of the fixed time budget on the quality
of code change testing. A significant increase in number of
defects in later testing stages could imply that the fixed
test budget for code changes has a strong negative impact
on testing quality. This would question the usefulness of
the approach. On the other hand, a low increase in defects
in later testing stages or none would indicate that the
trade-off between test runtimes and quality is acceptable.
In addition, we can combine runtime savings and number
of failures at later test stages to quantify the trade-off
between runtime and failures in later test stages in terms
of test runtime saved per failure.

A. RQ1 Budget Redistribution

Figure 4 visualizes how the time budget of each compon-
ent changed between t0 (introduction of the fixed time
budget for test executions, 2017-08) and ¢1 (2017-12).
Unfortunately, for budget redistributions, we do not have
the source and target components for all changes. There-
fore, we cannot show an alluvial diagram to illustrate the
fine-grained changes. We rescaled the unchanged budget
part, because it does not provide further information. The
percentage of the unchanged part differs in ¢t0 and ¢1 due
to an increase in the total time budget. The total time
budget increased due to readjustments after the initial
introduction. In total, the time budget increased for 18
components and decreased for 27 components between t0
and t1.

Figure 4 shows that budgets transfers occur in practice
to optimize benefits and costs. This is an indicator that
the expected economic effect exists in practice. Further
investigations of single cases show that there are multiple
reasons. Due to space and confidentiality reasons, we list
only some of them:

o Components were split to narrow the test scope. This

increases the test efficiency as tests are selected closer
to the scope of the tested component.

>
o
H

+90%

o

i
g
n
o
ot
©
4 -4%
S+ +
T X . X
j= RSN Unchanged budget, height scaled down N
m © ©
QO 4+ 4
£
= 0%]
p— -
:
o
ot
©
2
° &
N S
@
(0]
£
-_+21% =
}—
©
o))
N
-_+37%
-

+386%

Different Components

=
o
=

+ XY%

Time Budget Change

Figure 4. Changes in time budgets for each component over time
from ¢0 (introduction of the time budget, 2017-08) to ¢1 (2017-12).

e Required test runtimes were further analysed by
component team members and free test budget was
reallocated to other components.

o Test runtimes were improved. Long running tests were
identified, analysed and improved or unnecessary tests
were removed.

o Test placement was re-evaluated. Especially long run-
ning tests were reallocated to later stages of the testing
process with decreased run frequency.

Overall, the distribution of the fixed test budget to
components changed over time and the possibility to
reallocate test budget is used. Our analysis indicates that
this can lead to positive effects on the quality of the test
suite due to an incentive to maintain the test suite from a
cost and benefit perspective.

——— — — T
B A B c
= D M
.=

-

=

=

-

8

=

=

Q

.2

e

o]

o

o0

5

i

=1

—

[T Y A A
O~ WO = AN NN T O 0 DO ~ A
Dy iy G S i S S S S S SNV,
© © © O O © O I~ b= b~ - b b~ b - b~ I~ b=
L e e s s e s e s s T s T s T s T s s T s I
OO OO0 0000000000000 0O
AT A I ITTITIAAAAAAAAAATAAX

Month

Figure 5. Stacked area chart with test runtimes for product lines M
(main), A, B,C, D. The test runtimes for M decreased in August 2017
due to the introduction of the fixed time budget for test executions.

B. RQ2 Changes in Test Runtimes

Within the testing process of SAP HANA (Section II-A),
the fixed test budget affects only integration testing for the
main product line. Other integration stages have different
policies for test selection. We analyse the test cost changes
in terms of test runtimes for the integration testing to the
main product line and for all integration testing.

The fixed test budget defines the maximum threshold of
execution time for integration tests to the main product
line. At the point of the introduction to (August 2017), the
difference between budget and actual runtime was a factor
of 4. After ty, the actual runtimes are nearly equal to the
budget with some deviation. Deviations occur because of re-
adjustments and test runtime fluctuations due to variations
in infrastructure workload. Figure 5 shows the runtime
statistics for multiple product lines. M represents the main
product line. Figure 5 shows that the total runtime for
M decreased from August to September by a factor of 2.
Based on further analysis, we conclude that the reasons
for the smaller than expected reduction are test overheads
like compile times, binary redistribution, database install
and setup times, and test setup times.

Figure 5 shows that the fixed time budget for test
executions saved hardware resources, but the figure also
shows that additional product versions counterbalance the
savings. As a result of this study, SAP engineers currently
prepare the introduction of fixed time budgets or similar
approaches for other product lines. It is unclear whether
other product lines would require the same testing budget
as the main product line or if a reduced budget would be
sufficient for other product lines.

The overall average runtime for all integration tests
exhibits a more complex pattern. Figure 6 visualizes the
state before and after the introduction of the fixed test
budget. Unfortunately, there is no data logged for the time
before 2017 and we cannot analyse long term trends. Due

Test Runs

—o—

-

— % Avg. Time per Test Run

Test Runs per h

Number

4 5 6 7 8 9 10 11 12
Month of 2017

Figure 6. Integration test runtimes and runs over time. Test runtime
decreases and test runs increases and therefore test runs per hour
increases. Absolute numbers not shown due to confidentiality reasons.

to confidentiality reasons, we cannot provide the exact
numbers, Figure 6 only shows the scaled data. Figure 6
shows that the average test runtime R,,q decreased after
the introduction of the fixed test budget in August 2017.
This leads to an increase in test runs TR, which is
explained by hardware limitations. T'R multiplied with
R4vg cannot exceed the capacities of the existing hardware.
Therefore, if the product is fixed, T'R must increase if Rqyq
decreases. The increase in T'R and decrease in Rq,g result
in a increase by a factor two for the quotient test runs per
hour which represents efficiency.

Overall, Figure 5 and Figure 6 indicate that the fixed
test budget has a positive effect on test runtimes and test
runtime efficiency. It is unclear whether the current trend
continues and if yes, why. We would expect that after the
introduction of the test budget, there would be a sharp
decline of a factor 4 in the test runtime which would then
stay nearly constant. Our data shows that this factor was
not fully reached. The ongoing changes could indicate that
component teams are continuously improving their tests
and therefore optimizing their test budgets.

C. RQ3 Changes in Quality

We analysed all internal bug reports for valid test failures
and counted them over time (this excludes flaky test
results). Figure 7 shows the results. Statistically, there
are in average 3.20 failures per week. This number is
remarkable low for a large project as SAP HANA.

In addition, we compare the results from Section III-B
and Section III-C to quantify the trade-off between runtime
savings and failures in later test stages in terms of test
runtime saved per failure. We estimate runtime savings
R, by interpolation of test runtimes without the fixed
time budget R; and subtraction of the actual runtime
R,. In Figure 5, the last known test runtime R before
the introduction of the fixed test budget is shown by the
datapoint 2017-08 for M. We multiply R by 5 for 5 months.
We can determine R, by the sum over all actual test
runtimes in M for the last 5 months. Now, we can calculate
the runtime savings Ry = R; — R,.

Failures per Week

= " " " " " " " " " " " " " " H
34353637383940414243444546 4748495051
Calendar Week of 2017

Figure 7. Failures undetected by the reduced test suite but within
the full test run. Aggregated by calendar week due to the different
behaviour of weekdays and weekends. Average: 3.20 failures per week

Our calculation leads to a result of 104.50 years, which
implies that SAP saved 105 years of test execution time due
to the fixed time budget. With the average of 3.20 failures
per week indicated by Figure 7, we can calculate a quotient
of 1.83years/failure. This implies that SAP traded in
average a test runtime of 1.83 years against one additional
failure in a later test stage. This number only provides an
approximation of the trade-off, and does not necessarily
reflect the reality precisely due to the interpolation and
the low number of data points.

IV. RELATED WORK

Due to size constraints, we briefly highlight related
literature. Yoo et al. provide a survey about test case
selection and test suite reduction [5]. A recent systematic
literature review about test case selection from by Kazami
et al. highlights different trends and results in this area [6].
Blondeau et al. analyse test case selection within several
industrial projects [7]. Their work focuses on change based
testing, our investigated approach does not depend on
dependencies between changes and tests.

Our approach shares characteristics with risk-based
testing. Although, as explained in Section II-B, we mitigate
risks by a daily full test run. Felderer and Schieferdecker
provide a taxonomy of risk-based testing [8]. Risk-based
test planning subsumes techniques that select or prioritise
test cases based on a risk analysis of their costs and value.

Memon et al. study the same problem of polynomial
growth for test executions at Google [9]. The approach
used by Google utilizes a manual dependency list for each
product to collect all required test runs for a source code
change. The test framework collects these required test
runs over a period of four hours and runs each required
test only once. An automatic backward analysis identifies
failure-introducing commits. This approach reduces the
linear growth of test executions by commit frequency to a
constant factor due to the fixed number of executions per
day. However, our fixed test budget creates in addition in-
centives for developers to reduce and improve existing test
suites. Our multi-stage separation enables faster individual
feedback times.

V. CONCLUSIONS

We described the fixed time budget for testing approach
adapted by SAP to limit the test execution growth. We
analysed the initial effects on runtimes and quality in terms
of failures that pass the reduced test suite, and we analysed
the economic effects. Our analysis indicates that there are
positive effects on runtime and test suite efficiency, while
the negative effects on quality are low.

Although the current observations show possible trends,
we cannot conclude statistical significance due to limited
data. Further work would require an observation time of at
least one year to improve the statistical significance. One
year would cover periodic variations, which can be observed
for example at the end of the year due to vacations or
directly before and after releases of new major software
versions.

Based on internal discussions, the results of our analysis
are plausible and the impact on test runtimes is and failure
detection is reasonable. Surveys or questionnaires with
developers would allow to further analyse the impact of the
fixed time budget for testing on the individual developer.
These findings could support further refinements of our
approach. As a direct consequence of this work, the
fixed time budget for test executions will be introduced
for parallel product lines, as explained and reasoned in
Section III-B.

REFERENCES

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 643-653. (Cited from: I)

[2] A. Orso and G. Rothermel, “Software Testing: A Research
Travelogue (2000-2014),” in Proceedings of the on Future of
Software Engineering, ser. FOSE 2014. New York, NY, USA:
ACM, 2014, pp. 117-132. (Cited from: I)

[3] F. Féarber, S. K. Cha, J. Primsch, C. Bornhévd, S. Sigg, and
W. Lehner, “SAP HANA database: Data management for modern
business applications,” SIGMOD Rec., vol. 40, no. 4, pp. 45-51,
Jan. 2012. (Cited from: II)

[4] T. Bach, A. Andrzejak, and R. Pannemans, “Coverage-based re-
duction of test execution time: Lessons from a very large industrial
project,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), March
2017, pp. 3-12. (Cited from: II)

[5] S. Yoo and M. Harman, “Regression testing minimization, se-
lection and prioritization: A survey,” Softw. Test. Verif. Reliab.,
vol. 22, no. 2, pp. 67-120, Mar. 2012. (Cited from: 1V)

[6] R.Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective
regression test case selection: A systematic literature review,”
ACM Comput. Surv., vol. 50, no. 2, pp. 29:1-29:32, May 2017.
(Cited from: IV)

[7] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy, and
S. Ducasse, “Test case selection in industry: An analysis of issues
related to static approaches,” Software Quality Journal, vol. 25,
no. 4, pp. 1203-1237, Dec. 2017. (Cited from: IV)

[8] M. Felderer and I. Schieferdecker, “A taxonomy of risk-based
testing,” International Journal on Software Tools for Technology
Transfer, vol. 16, no. 5, pp. 559-568, Oct 2014. (Cited from: IV)

[9] A. Memon, B. Nguyen, E. Nickell, J. Micco, S. Dhanda, R. Siem-
borski, and Z. Gao, “Taming Google-scale continuous testing,”
in ICSE ’17:Proceedings of the 39th International Conference on
Software Engineering, 2017. (Cited from: IV)

	Introduction
	Testing at SAP HANA and an Economic Approach for Test Case Selection / Reduction
	Testing of SAP HANA
	Fixed Test Budget Approach

	Results
	RQ1 Budget Redistribution
	RQ2 Changes in Test Runtimes
	RQ3 Changes in Quality

	Related Work
	Conclusions
	References

