
CollectionSwitch: A Framework for
Efficient and Dynamic Collection Selection

Diego Costa
Institute of Computer Science

Heidelberg University
Germany

diego.costa@informatik.uni-heidelberg.de

Artur Andrzejak
Institute of Computer Science

Heidelberg University
Germany

artur.andrzejak@informatik.uni-heidelberg.de

Abstract
Selecting collection data structures for a given application
is a crucial aspect of the software development. Inefficient
usage of collections has been credited as a major cause of
performance bloat in applications written in Java, C++ and
C#. Furthermore, a single implementation might not be opti-
mal throughout the entire program execution. This demands
an adaptive solution that adjusts at runtime the collection
implementations to varying workloads.

We present CollectionSwitch, an application-level frame-
work for efficient collection adaptation. It selects at runtime
collection implementations in order to optimize the execu-
tion and memory performance of an application. Unlike pre-
vious works, we use workload data on the level of collection
allocation sites to guide the optimization process. Our frame-
work identifies allocation sites which instantiate suboptimal
collection variants, and selects optimized variants for future
instantiations. As a further contribution we propose adaptive
collection implementations which switch their underlying
data structures according to the size of the collection.
We implement this framework in Java, and demonstrate

the improvements in terms of time and memory behavior
across a range of benchmarks. To our knowledge, it is the
first approach which is capable of runtime performance op-
timization of Java collections with very low overhead.

CCS Concepts • Software and its engineering→ Data
types and structures; Software performance; Software
libraries and repositories;

Keywords data structure, performance, optimization, adap-
tive algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CGO’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00
https://doi.org/10.1145/3168825

ACM Reference Format:
Diego Costa and Artur Andrzejak. 2018. CollectionSwitch: A Frame-
work for Efficient and Dynamic Collection Selection. In Proceedings
of 2018 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO’18). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3168825

1 Introduction
Collections are data structures that group multiple elements
into a single unit. Given that modern programs use collec-
tions in thousands of program locations [15], [22], selecting
appropriate type and implementation is a crucial aspect of
developing efficient applications. Choosing a wrong collec-
tion variant may result in performance bloat, i.e. unnecessary
or even excessive use of memory and/or computational time.
Numerous studies have identified the inappropriate use of
collections as the main cause of performance bloat [10, 19].
Even in production systems, the memory overhead of indi-
vidual collections can be as high as 90% [5].

Selecting a collection variant suitable for a given applica-
tion and its workload depends on many factors. The most
common method used to choose the collection type and its
implementation is the asymptotic model. The asymptotic
model offers a suitable approach for understanding the time
complexities of different data structure operations, however
it might lead to wrong conclusions in a real usage context.

In the realm of collections performance, constants matter.
For instance, using map implementations (e.g. HashMap or
TreeMap in JDK) offers constant or logarithm asymptotic
search times, but if collections have only few elements, a
linear search on an array might perform much better due to
effects of caching and memory locality.
In reality, programmers often rely on standard libraries

and select only a handful of implementations for the de-
velopment of a program. An empirical study [6] of open-
source Java projects showed that a majority of all declared
collections use only three JDK implementations: ArrayList,
HashSet and HashMap. Alternative implementations of the
same collections are rarely used. However, such alternatives
can provide substantial performance improvements under
certain conditions.
Another challenge is the fact that the workload of a pro-

gram is dynamic and might drastically change during the

16

https://doi.org/10.1145/3168825
https://doi.org/10.1145/3168825

CGO’18, February 24–28, 2018, Vienna, Austria Diego Costa and Artur Andrzejak

execution. Many studies have shown that a real-world exe-
cution often consists of multiple phases, and workloads (as
well as program behavior) can change many times during a
single run [14, 23]. In many cases, it has proven to be impos-
sible to find a single optimal solution for the whole program
run [25].
While crucial for performance, selecting a suitable col-

lection type and implementation might be a complex task,
creating an additional problem to be faced by the developers.
Consequently, this calls for automated solutions that can an-
alyze the application workload, and decide which collection
variant to use based on the current usage scenario.

We propose an approach and its implementation for dy-
namic (runtime) selection and optimization of collection
variants. Particular attention was given to efficiency, result-
ing in a negligible overhead despite of runtime adaptation
capabilities. Our approach works at two levels of granularity:
at the level of a collection allocation site, and at the level of
individual collection instances.
In the first case, our method modifies the allocation sites

of collections in order to monitor the created instances, and
to potentially change the implementation variants created at
these sites. To this aim the approach analyzes the workloads
of previous instances created by a specific allocation site.
On basis of this data and user-defined performance rules it
decides whether the considered allocation site should use
other variants of collection implementations for future in-
stantiations, and which variants.

To optimize on the level of individual collection instances,
we introduce adaptive collection variants capable of chang-
ing the internal data structures depending on the collection
size. An example is AdaptiveSet which changes the internal
data structure from an array to a hash table above a certain
number of elements. In this way they ensure low memory
overhead without performance penalty when the number of
elements increase.

Contributions. The contributions of this work are the
following:

1. An approach for dynamic (runtime) selection of collec-
tion implementations. The choice of collection variants
optimizes (for a specific allocation site) performance
along multiple dimensions according to the workload
profiles of monitored instances and according to con-
figurable rules.

2. CollectionSwitch: a low-overhead, concurrent imple-
mentation of this approach as an application-level li-
brary.

3. An analysis and implementation of adaptive collec-
tions which dynamically switch their underlying data
structure according to the size of the collection.

4. An empirical evaluation of both concepts and their
implementation on synthetic benchmarks and real ap-
plications.

2 Background and Motivation
Terminology. In Java, collections are objects that group
multiple elements into a single unit. A collection uses one
or more data representation to efficiently store, manipulate
and provide access to the held elements. For instance, an
ArrayList is a list implemented with the array representa-
tion, while the LinkedHashMap uses both a hash-table and a
linked-list to provide an ordered map with constant element
access time. For this work, we refer to data representation
as the collection implementation.

Each collection implements a set of operations defined by
an abstract data type. The abstract data type, hereby denoted
as the collection abstraction, binds a semantic contract for the
collection, but leaves the implementation open for different
approaches. Multiple variants of the same implementation
can then be selected impacting the underlying performance
of the program without compromising its functionality.

2.1 The Collection Selection Problem
Definition. Given a program and its usage scenario, the col-
lection selection problem concerns finding a set of collection
implementations which optimize some performance-related
criteria, typically in context of the usage scenario. Multi-
ple performance criteria can be considered for this problem,
such as the execution time [22], memory footprint and allo-
cation [6], and energy consumption [13]. In this work, we
focus on a multi-dimension improvement of time and space,
that is, we aim finding collection variants that minimize the
execution time to perform the operations and/or reduce the
space and allocation required to hold the elements.

Online Solutions. Online solutions propose to shift the
responsibility of selecting an implementation from the de-
veloper to the runtime, realized by adaptive collections. As
the name suggests, an adaptive collection adapts its own im-
plementation to another variant, better suited for its current
usage scenario. Apart of taking away this burden from the
developer, the adaptive collection also tackles the problem of
optimizing programs with multiple workload patterns. Sev-
eral works [1, 7, 25] have shown that a single implementation
and algorithm is often not optimal for the entire program
execution, specially on large-scale softwares.

From the proposed adaptive approaches, two major strate-
gies became dominant in recent studies:

1. Adaptivity with Instant Transition. The adaptive col-
lection performs a complete transition (copy) to the
most adequate variant triggered by workload analy-
sis [21].

2. Adaptivity with Gradual Transition. The adaptive col-
lection simultaneously uses multiple implementations,
and gradually switches to the most adequate one when
certain conditions apply [25].

Instant Transition. The first approach is more generally
applicable as it can provide improvements for both memory

17

CollectionSwitch CGO’18, February 24–28, 2018, Vienna, Austria

Application

Selection

Rules

CollectionSwitch

Model Builder

Performance

Model Target

MachineModify

Allocation sites

Specify

Performance Goals

Runtime Profile

Manage

Collections
- new ArrayList();
+ context.createList();

Automated

Manual

Benchmark

Benchmark Run

Benchmark

Results

Figure 1. Overview of the processes and dependencies used
in our approach.

and time. For example, it can achieve a reduction of the mem-
ory footprint for maps via the following strategy. Initially, a
map is realized via an ArrayMap, a memory efficient variant
of the map abstraction. For a small number of elements this
incurs no penalty for lookups and can significantly reduce
the footprint of an application. As the collection grows in
size, it replaced its internal data structure by a traditional
HashMap, thus avoiding the penalty of a linear search on
larger sizes.
In some cases this approach might yield a substantial

performance degradation. The H2 application in DaCapo
benchmark [3] provides an example of such behavior, as
few allocation sites generate the majority of collection in-
stances in the large benchmark. In particular, the allocation
site IndexCursor:70, instantiates +1 million objects in a few
seconds. The above mentioned technique causes 12% of per-
formance degradation without reducing the memory foot-
print of the program. This can be attributed to the fact that
the majority of created instances were short-lived, and about
half of the instances triggered a collection transition.
The instant transition approach has inherent shortcom-

ings in terms of execution performance. The swap of the
implementation costs both time and allocation and should
only be performed when the analysis predicts that future
usage will benefit from the alternative data structure.

Gradual Transition. In the second approach, the devel-
oper is actively trading memory for potential time improve-
ment. Each collection maintains multiple implementations
with a similar state (elements) and gradually changes the
active implementation to a more optimal variant. This effec-
tively reduces the cost of transitioning the implementation
but cannot be used for memory improvements. Coco [25]
proposes this method and evaluates it on the DaCapo bench-
mark.

3 Approach
The optimization of collection variants takes place at two
levels of granularity: at the level of a collection allocation
site, and at the level of the individual collection instances.

• Allocation site-level adaptation.We modify the al-
location sites of collections in order to enable them
for workload-aware selection of the variants created
during future instantiations (Section 3.1). To this aim
we monitor and analyze the behavior of previous in-
stances created by a specific allocation site, and de-
cide on switching to other variants according to user-
defined performance rules. The overall approach is
illustrated in Figure 1.

• Instance-level adaptation. We introduce adaptive
collection variants capable of changing the internal
data structures depending on the collection size (Sec-
tion 3.2). Such variants are suitable if collection in-
stances created by the same allocation sites can have
both only few or a large number of elements.

In the first case the selection exploits previously computed
performance models, and the runtime data characterizing
the workloads of the deployed collection instances (Figure 1).
Furthermore, users can influence the selection outcomes via
configurable rules.

3.1 Adaptation on Allocation Site-Level
Technically, selected allocation sites are instrumented with a
code layer called allocation context which creates, monitors
and adapts the collections (see Figure 4 and description of
the implementation in Section 4.3). Each allocation context
initially instantiates default collections variants, as specified
by the developer.

A sample of all created collection instances is instrumented
and monitored in order to obtain the workload profiles of
these instances. A workload profile comprises the number of
executed critical collection operations (listed in Section 4.1.2,
such as populate, contains, or iterate) and essentially the max-
imum size of a collection.
The allocation context periodically evaluates these pro-

files to decide whether future instantiations should use an-
other collection variant than the current one (i.e. whether to
"switch"), and if yes, which variant (Figure 2). After switch-
ing to a new variant a fraction of the instances is monitored
to allow a continuous adaptation process.

3.1.1 Variant Selection Algorithm
The allocation context in our approach selects a collection
variant by considering multiple cost dimensions such as exe-
cution time and memory overhead. While the interplay of
these dimensions is described in Section 3.1.2, we assume in
the following a fixed cost dimension D.

18

CGO’18, February 24–28, 2018, Vienna, Austria Diego Costa and Artur Andrzejak

ArrayArrayArray

Adaptive Allocation

Context

Performance

Models

ctx = Switch.createContext(ARRAY);

for(;;) {
myList.contains(obj);

}

myList2 = ctx.createList();

Monitor

ArrayList

myList = context.createList();

myList
myList

Instance Profile

containsCounter++

ArrayHash

switch to

the best-fit

Feedback

Monitor

HashArrayList

Application Source-Code

Figure 2. Selection of collection variants by allocation contexts based on the workload profiles on collection instances.

We compare the collection variantsV (per cost dimension
D) according to the total cost tc(V) metric. This metric de-
pends on the observed workload profilesW of the monitored
collection instances. In particular,W comprises the numbers
of executed critical operations Nop during the lifetime of
a monitored collection instance, and the maximum size s
of this instance. Moreover, tc depends on the performance
models obtained for each variant (Section 4.1). These models
yield the averaged costs costop,V (s) of a critical operation op
of the collection V depending on s , the maximum size of a
collection.

With these preliminaries, we define tc(V) = tcW (V) as

tcW (V) =
∑
op

Nop,W ∗ costop,V (s).

Note that tc(V) only estimates the total cost of all opera-
tions under a workload, since we use themaximum collection
size s as an argument to a performance model costop,V (s),
and not the actual collection size when a specific operation
is executed. As the cost of an operation are typically larger
with growing s , the value of tc(V) is an overestimate.

The above description assumed workload data from only
a single monitored collection instance. In reality we monitor
multiple such instances (per allocation context). We exploit
all this data by summing up the total cost over all monitored
instances. These sums TCD (V) (per collection variant V and
a cost dimension D) are used when applying the selection
rules described below.

3.1.2 Configurable Selection Rules
Typically an improvement on one cost dimensionmight incur
penalties on costs in other cost dimensions. For instance, an
ArrayMap is memory efficient but has a linear time for access,
as no structure is used to index the keys. Adding an index to
reduce the access time (hashtable, AVL tree) comes at a cost
of higher memory usage.

To account for such trade-offs, we introduce configurable
selection rules. Such a rule R consists of one or more criteria
(predicates) C1,C2, . . ., each corresponding to a unique cost
dimension (e.g. execution time, memory overhead, or energy
usage). A collection variant is selected by R if all of the
criteria are satisfied. A criterion Ci is satisfied if the ratio of
the total cost TCD (Vnew) of a candidate collection variant
Vnew (i.e. a potential replacement) by the total costTCD (Vcur)
of the current variantVcur is not larger than a user-specified
threshold TD . In other words, Ci is satisfied if

TCD (Vnew)

TCD (Vcur)
≤ TD .

Note that TD < 1 enforces a cost reduction, while TD ≥ 1
expresses a maximum penalty incurred by the candidate
variant. Table 4 shows examples of some typical selection
rules.

During periodical evaluation of workload data for a given
allocation context, we switch the collection variant if a se-
lection rule finds a variant different from the currently used
one. If multiple candidates satisfy all the criteria, we select a
variant with a largest improvement on the first criterion C1.

3.2 Adaptation on Instance-Level via Adaptive
Collections

Adaptive collections are able to change their internal data
structure depending on the current size of the collection (i.e.
number of contained elements). The motivation for such
data structures is that for small collection sizes, operations
such as element search (or set contains) require comparable
or even shorter time if it is implemented as linear search
on an array as compared to a lookup in a proper hash table.
However, using an array as the underlying data structure
reduce significantly the memory footprint.

In this work we studied adaptive collections which change
the underlying data structure from an array (lower memory
overhead but linear search) to a hash table (higher memory

19

CollectionSwitch CGO’18, February 24–28, 2018, Vienna, Austria

Table 1. Adaptive collection types studied in this work, their
transition types, and the optimal transition thresholds (in
terms of the collection size).

Col. Variant Transition Threshold
AdaptiveList array → hash 80
AdaptiveSet array → openhash 40
AdaptiveMap array → openhash 50

-1

0

1

2

10 20 30 40 50 60 70 80

P
er

fo
rm

an
ce

 B
en

ef
it

HashSet Size

𝑎𝑟𝑟𝑎𝑦→ℎ𝑎𝑠ℎ

Figure 3. Transition threshold analysis of AdaptiveSet. The
optimal threshold for transitioning from array to hash table
is at collection size of 40.

overhead, constant lookup time). For the hash tables, hash
denotes an implementation which creates a bag of keys in
case of hash function conflicts (similarly to JDK’s HashMap
implementation). The openhash version solves hash function
conflicts by shifting the key placement to the next free posi-
tion in the underlying table. Table 2 lists the three adaptive
data structures and their transition types.
In CollectionSwitch, such adaptive variants are consid-

ered as candidates for future instantiations only if the corre-
sponding allocation context has identified that the previously
created collection instances had widely ranging sizes.

Transition threshold of adaptive collections.The per-
formance behavior of an adaptive collection is significantly
influenced by the criteria for changing the internal represen-
tation. To create performancemodels of these data structures,
we had to optimize and fix the transition thresholds for all
studied variants (Table 2). We used the lookup search as
the scenario for finding this threshold, since our adaptive
collections attempt to optimize element search.
We calculate the transition threshold by finding the col-

lection size for which the cost of transition to a hash table
would be surpassed by the cost of calling the lookup oper-
ation for every collection element. Figure 3 illustrates this
method for the AdaptiveSet. The optimal thresholds for each
adaptive collection are shown in Table 1.

4 Implementation
Our framework is composed of two components: the perfor-
mance model builder and a library. The performance builder
creates performance models of collection variants via bench-
marking. The CollectionSwitch library exploits these perfor-
mance models at runtime for adaptive selection of collection
variants (Section 3.1.1).

4.1 Performance Models via Benchmarking
The underlying hardware plays an important role in the col-
lection selection problem. In the evaluation shown in [15],
different hardware architectures yield distinct best data struc-
tures given the same applications. This substantiates the need
for hardware-specific benchmarking and performance mod-
eling as a prerequisite to optimization of collection selection.
Another benefit of such benchmarking is uncovering the
performance differences hidden by the asymptotic analysis.

4.1.1 Considered Collection Variants
In this paper we consider and benchmark multiple imple-
mentations of the most used collection abstraction types,
namely Lists, Sets and Maps. The variants used in this study
are shown in Table 2.

In order to have a compelling search space to explore, we
select implementations from both JDK and alternative collec-
tion libraries. We consider implementations from Koloboke
[16], EclipseCollections [8] and FastUtil [24] due to their
good overall performance.
Additionally, we include implementations not provided

by a collection library, such as the ArraySet/ArrayMap pro-
vided by Google HTTP Client [11] and Stanford NLP [12]
Those variants have a narrow best-case scenario, but offer
a substantial improvement when used in the right circum-
stances.

4.1.2 Computing the Performance Models
To compute the performance models, we run a set of bench-
marks using a factorial experimental plan [20], designed to
evaluate each collection variant in a wide scope of usage
scenarios (see Table 3). Each usage scenario is composed of
a single operation executed on a range of collections size
from 1 to 10K. To reduce the time of the benchmark, we only
evaluate critical operations, i.e., operations that have in at
least one variant a linear or above asymptotic cost (O(n)).
Consequently, we evaluate collections when adding elements
to the collection (populate), searching for an element (con-
tains), traversing (iterate) and adding/removing an element
in the middle (middle), which is linear on array and linked
implementations.

The empirical model was built considering only the Integer
data type. Albeit having an impact on the performance of
some operations, we believe this impact will be dwarfed by
the differences of performances caused by the collection im-
plementation. The data distribution, on the other hand, can
impact hash structures as it has an influence on the collisions.
We only consider uniform distribution in this model.

We build the benchmark using the support of JMH1 frame-
work, a Java harness framework for building, running and
analyzing benchmarks. The JMH provides a native method
for collecting the execution time, and we use the JMH GC

1http://openjdk.java.net/projects/code-tools/jmh/

20

CGO’18, February 24–28, 2018, Vienna, Austria Diego Costa and Artur Andrzejak

Table 2. Collection implementations identified as candidates for variants.

Collection Implementation Implemented by Description
Abstraction
Lists ArrayList JDK Array-backed list

LinkedList JDK Double-linked list
HashArrayList Switch ArrayList + HashBag for faster lookups
AdaptiveList JDK → Switch ArrayList on small sizes and HashArrayList for large sizes

Sets / Maps HashSet / Map JDK Chained hash-backed set/map
OpenHashSet / Map Koloboke, Eclipse, Fastutil Open-address Hash-backed set/map
LinkedHashSet / Map JDK Chained hash-backed with double-linked entries
ArraySet / Map Fastutil, Google, NLP Array backed set/map
CompactHashSet / Map VLSI Byte-serialized map for high memory efficiency
AdaptiveSet / Map NLP/Google → Koloboke Array-backed on small sizes and Hash-backed on large sizes

Table 3. Factors and levels adopted in the empirical evalua-
tion of collections.

Factor Levels/Categories
Collection Size [10,50,100,150,..,1000]
Scenarios populate, contains, iterate, middle
Data Type Integer
Data Distribution Uniform

profiler to retrieve the memory allocated and footprint re-
quired in each scenario. Each iteration runs for five seconds,
executing the defined scenario continuously and returning
the average of the measured performance indicators. We run
15 unmeasured iterations to achieve the steady-performance,
and use the average results of 30 measured iterations in our
performance model.

Modeling collection performance. We model the cost
of each critical operation as a polynomial function of the
collections size s:

costop (s) =
d∑
k=0

aks
k

The coefficients are calculated using the least squares poly-
nomial fit on the results of the benchmark. For this work
we use polynomials of third degree (d = 3), as this choice
provided the small residuals, while polynomials of higher
degree did not increase the least-square fit significantly.

4.2 The CollectionSwitch Library
Wedesigned the CollectionSwitch as an application library as
opposed to a customized Virtual Machine (VM). This design
choice was based solely on facilitating the adoption of our
framework by developer teams. A modified VM would incur
on a harsh constraint, as to use CollectionSwitch applications
would be required to deploy using our personalized VM.
The CollectionSwitch is open-source library and is available
online2.

2https://github.com/DiegoEliasCosta/collectionSwitch

4.3 Adaptive Allocation Context
An allocation context is an instrumented version of a collec-
tion allocation site. It creates the collections and monitors
a subset of the created instances to obtain workload data,
characterizing the current usage scenario. When collections
finish their life-cycle, the workload data is passed to the al-
location context. As described in Section 3.1, this initiates
the performance analysis of collection variants. If a better
variant is found, the allocation context switches the current
implementation for future collection instantiations and starts
another monitoring round.

Specifying anAdaptiveContext.The CollectionSwitch
acts as middle layer between the application and the col-
lection libraries, collecting information and switching the
adaptive allocation sites to the appropriate variant. The allo-
cation context is implemented as a Java object, instantiated
before the creation of the collections. The context creation is
specified by the programmer via API, or can be automatically
generated via code parser.

By creating the context, the developer may choose to use a
static or non-static context object. A static context is created
as soon as the class is loaded in the class-loader and is kept
alive until the end of the application. The usage of static
context greatly reduces the potential overhead incurred by
the framework, and it is closely related to the concept of
tuning the allocation site. However, a developer could use a
non-static context if the collections behavior is dependent
on the instance that creates it.
We also provide an automated parser that rewrites the

code of collection instantiation to the adaptive context re-
quired by our framework. The parser only identifies collec-
tions already declared as using the JCF interfaces and only
uses the static context.

Monitoring the Collections Usage Each allocation con-
text collects metrics on a subset of created instances to char-
acterize their overall collections usage. Example of metrics
include the maximum collection size and the amount of crit-
ical operation calls. We decide to analyze only a subset to

21

https://github.com/DiegoEliasCosta/collectionSwitch

CollectionSwitch CGO’18, February 24–28, 2018, Vienna, Austria

// Original allocation site

List<?> list = new ArrayList<>();

// Modified code with allocation context

static ListContext ctx =

Switch.createContext(CollectionType.ARRAY);

List<?> list = ctx.createList();

Figure 4. Instrumenting collection allocation sites with al-
location context.

avoid a potential overhead in case of a huge amount of col-
lection instantiation in a short period of time. The size of
this monitored subset is defined by the monitored window
size, and it is parametrized by the developer. The monitored
collections are created with an extra layer called monitor, a
wrapper that logs the metrics in the context and forwards
the collection logic to the proper implementation.

Analyzing the Collections Usage. A vital aspect of the
CollectionSwitch implementation is when should the allo-
cation context use the feedback to perform its transitions.
In principle, a feedback should be used only when it pro-
vides a complete context, ie when the collections already
ended its life-cycle. In practice, this delays the decision of
the allocation context when collections are retained for too
long in memory, hurting the context adaptivity. To address
this we created the finished ratio, which defines the ratio of
monitored collections that needs to be finished, before the
context can take any decision. For instance, a finished ratio
of 0.6 implies that the allocation context will only take action
when at least 60% of the instances have finished their execu-
tion. It is important to note that we always use the whole set
of metrics to analyze the collections usage, the ration only
determines when the feedback should be analyzed.
To assess whether the collection object has finished its

execution, the allocation context saves a WeakReference to
the instance. As soon as the collection is eligible for garbage
collection, this weak reference returns null, when asked for
the referenced object. This method is more reliable and does
not incur the substantial overhead caused by the finalize
method [4].

We implement the analysis of the collections usage using
a thread pool to analyze every collections context. A periodic
task is scheduled at a parametrized fixed rate (monitoring
rate). This thread pool can be assigned to a specific proces-
sor, to reduce the impact of the analysis on the monitored
application time.

4.4 Limitations
The major limitations of the CollectionSwitch are: 1) errors
in estimating the true cost of collection execution, and 2)
potential increase of susceptibility to faults due to increased
complexity.

Table 4. Selection rules Rt ime and Ralloc .

Rule Improvement Penalty
Rt ime Time cost < 0.8 –
Ralloc Alloc cost < 0.8 Time cost < 1.2

Estimation errors. Multiple factors contribute to this
limitation. First, we use accumulated execution cost, which
might hide the true behavior of collections in a real appli-
cation. For example, short-lived instances and collections
executed in parallel can have distinct impact on the applica-
tion’s performance. Also factors such as memory locality and
branch misprediction are not considered in our performance
model. On the other hand, CollectionSwitch only needs accu-
racy sufficient to expose the performance differences between
collection implementations. Using a more or fully accurate
model might increase the runtime overhead and thus limit
the benefits of the approach.

Increased susceptibility to faults. CollectionSwitch in-
herently increases the complexity of the target application-
code, potentially introducing new defects. Furthermore, the
overall complexity of application behavior increases due to
introduced adaptivity: different scenarios might yield dif-
ferent collection implementations, increasing the chance of
functional bugs and raising the cost of diagnosis. We miti-
gate this by selecting well-tested implementations, and by
providing a detailed log system for tracing framework events.

5 Evaluation
We evaluate the effectiveness of CollectionSwitch on two
sets of benchmarks: the CollectionsBench [6], a set of micro-
benchmarks specifically designed to evaluate collections per-
formance, and DaCapo, a set of real-world application bench-
marks [3]. We conduct our experiments on a machine with
the i7-2760QM 2.40GHz CPU and 8GB RAM under Ubuntu
Linux 3.16.0-53 (64 bits).
To optimize applications for time and space dimensions

we use two rules shown in Table 4. They target optimizing
execution time and memory allocation, respectively. Note
that Ralloc comprises a maximum penalty allowed on the
execution time, otherwise array-backed implementations
would be prioritized due to their low memory footprint.

For the whole experiment we use a window size of 100
instances, a level that showed a good compromise between
fast analysis and stable transitions. Furthermore, the finished
ratio is set 0.6, and the monitoring rate is 50ms.

5.1 Micro-benchmarks
We extended the CollectionsBench benchmark to evaluate
the CollectionSwitch through experiments covering scenar-
ios dominated by a single collection operation (single-phased),
and scenarios with the dominant operation varying over
time (multi-phased). We follow the methodology [9] for eval-
uating the steady-state performance of Java programs. In

22

CGO’18, February 24–28, 2018, Vienna, Austria Diego Costa and Artur Andrzejak

particular, we run each test scenario with 15 unmeasured
iterations for warm-up, followed by 30 measured executions.

Single-Phased scenario. In this experiment, each sce-
nario consists of creating and populating 100k collection in-
stances, followed by 100 lookup searches (contains()). The
lookup operations have different asymptotic complexities
on array/hash implementations and showcase an interesting
trade-off between time and memory consumption. Figure 5
shows the performance against JDK implementations (Ar-
rayList, HashSet, HashMap) for varying collections size.
CollectionSwitch was able to select variants with better

performance on all collection abstractions. In Figure 5a the
performance is gained by switching to a HashArrayList im-
plementation. On sets and maps (Figures 5b and 5c) this
performance was achieved by switching to the Koloboke
OpenHash implementation.

In case of Ralloc , CollectionSwitch switches multiple times
for both sets and maps. On small collections (size < 400),
FastUtil OpenHash implementation is selected (the most
memory efficient variant). For medium size collections, the
time penalty for using FastUtil lookup crosses the threshold
established by Ralloc , and EclipseCollection is selected. A
yet better implementation (Koloboke) is identified and used
when the collection size reaches 700.

Multi-Phased scenarios. Each iteration of this experi-
ment is comprised of the creation and population of 100k
instances followed by an execution of 100 operations. Every
five iterations we change the operation type resulting in the
phases depicted in Figure 6.
In our experiments our framework switched to the ex-

pected best-fit implementation for all phases except for the
phase "search and remove". Here the HashArrayList instead
of the optimal ArrayList was used. We attribute this to a lim-
itation in our performance model. In summary, our model as-
sumes that cost of removing an element by index is identical
on both variants. In reality, HashArrayList implementation
is slower as it searches on both hash and array structures.

5.2 Evaluation on Real Applications
DaCapo is a set of application benchmarks widely used as an
evaluation tool for a variety of scientific studies. The latest
DaCapo version (dacapo-9.12) contains 14 benchmarks from
which we use the following five: avrora, fop, h2, lusearch
and bloat (2006 version). We select this subset as container
inefficiencies were previously reported [21, 22, 25] on those
projects.
CollectionSwitch requires modifications of existing code

to use the adaptive allocation contexts. To limit this effort,
we modify only allocation sites that yield at least one thou-
sand instances and that comply with JCF interfaces (possibly
with little refactoring effort), hereby denoted as target alloca-
tion sites. To this end, we first monitor a regular benchmark
execution and rank the allocation sites by the number of
generated instances.

To compare the effectiveness of the full framework against
the benefits of a simple adaptivity at instance-level we use
two modified versions of DaCapo. In the first version (Ful-
lAdap), each target allocation site is modified to use our
allocation context, providing full framework capabilities. In
the second version (InstanceAdap), the target allocation sites
are simply changed to always instantiate an adaptive variant
(e.g. ArrayList→ AdaptiveList), i.e. without the capability
of selecting the collection types through the analysis of pre-
vious instances.

In this experiment we run the original and the two mod-
ified DaCapo benchmarks 35 times with a maximum heap
size of 1 GB (first 5 runs are discared as warm-ups) .

Results summary. Table 5 shows that the time andmem-
ory improvement vary considerably by application and se-
lection rule. Overall, in case of FullAdap, CollectionSwitch
managed to positively impact the execution time and the
peak of memory consumption in most of the evaluated ap-
plications.

Time Improvement (Rt ime) for FullAdap. The largest
improvement of the execution time (≈ 15%) was obtained for
lusearch. The dominant transition in lusearch was performed
on map variants, as most of its HashMap instances held
less than 20 elements, and were replaced by AdaptiveMap
and Koloboke OpenHashMap. Thus, as a side effect, Collec-
tionSwitch also reduced the memory peak consumption of
lusearch by ≈ 5%. Benchmarks fop and h2 showed similar
characteristics of collection transitions. Both of them have
allocations sites that extensively instantiate lists exposed to
large amount of lookup calls. CollectionSwitch has correctly
transitioned them to AdaptiveList (array → hash). This tran-
sition improved the execution time of h2, but provided no
significant improvement for fop.

Memory Improvement (Ralloc) for FullAdap. In case
of Ralloc , CollectionSwitch managed to reduce the peak of
memory consumption of most of the applications. Typically,
HashSet and HashMap were replaced by adaptive and open-
hash variants. Interestingly, the bloat benchmark had a lower
execution time in this case (Ralloc) than when when aiming
at the time reduction (Rt ime). We conjecture that a reduction
of memory usage implied in a better cache utilization and
lower Garbage Collection time.

Comparizon of FullAdap and InstanceAdap. Table 5
compares the effectiveness of both levels of optimization, Ful-
lAdap and InstanceAdap. The simpler version InstanceAdap
featured comparable (but not better) improvement grades for
memory usage as the full framework under the rule Ralloc .
However, the InstanceAdap version failed to achieve any
improvement on the execution time, especially in compari-
son with the full CollectionSwitch under the Rt ime . These
results indicate that allocation-site adaptivity is essential
for improvement of execution time Such mechanism help
to consider multi-dimensional criteria (memory and time),

23

CollectionSwitch CGO’18, February 24–28, 2018, Vienna, Austria

0

0.4

0.8

1.2

1.6

100 200 300 400 500 600 700 800 900 1000

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Collection Size

CollectionSwitch

ArrayList

(a) Time comparison against JDK ArrayList

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500 600 700 800 900 1000

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Collections Size

CollectionSwitch

HashSet

(b) Time comparison against JDK HashSet

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500 600 700 800 900 1000

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Collections Size

CollectionSwitch

HashMap

(c) Time comparison against JDK HashMap

0

100

200

300

400

500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 A
ll

o
ca

te
d
 (

M
B

)

Collections Size

CollectionsSwitch

HashSet

(d) Allocation comparison against HashSet

0

100

200

300

400

500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 A
ll

o
ca

te
d
 (

M
B

)

Collections Size

CollectionsSwitch

HashMap

(e) Allocation comparison against HashMap

Figure 5. CollectionSwitch performance on populating 100k collections and executing 100 random lookups (contains).
CollectionSwitch was evaluated with Rt ime for execution time and Ralloc for allocation. The marker indicates a size where
CollectionSwitch performed a transition to a different variant.

-200

300

800

1300

1800

E
x

ec
u
ti

o
n

 T
im

e
(m

s) CollectionSwitch

ArrayList

HashArrayList

LinkedList

index
operationcontains iteration

search and

remove
contains

Figure 6. CollectionSwitch time performance on a multi-
phased scenario, evaluated with Rt ime .

which prevents the uncontrolled performance degradation
which might be introduced by adaptive collection.

CommonTransitions.Table 6 shows themost frequently
selected transitions (by application and by selection rule).
Only 11 out of the 25 possible variants were used in our
evaluation. This indicates that a small set of collection vari-
ants might be sufficient to cover most of the real cases found
in the applications. Moreover, in most allocation sites our
framework replaced the original implementation. We con-
jecture that our approach offers unexploited potential for
improving performance in applications.

5.3 Overhead of the CollectionSwitch Framework
To evaluate the time and space overhead incurred by our
approach on DaCapo benchmark, we compare the perfor-
mance statistics of the unmodified benchmarks against such
statistics under CollectionSwitch (FullAdap) with disabled

250

255

260

265

270

275

280

285

100 1000 10000 100000

T
im

e
O

v
er

h
ea

d
 (

n
s)

Window Size

Figure 7. Overhead of analyzing the collections metrics by
window size.

optimization actions. We achieve the latter by setting an im-
possible selection rule (required 1000x time/space improve-
ment for a transition). We found no significant difference
(Tukey HSD) in the execution time in any DaCapo bench-
mark when using our standard configuration.
Additionally, we run a micro-benchmark to evaluate the

cost of analyzing a set of collection metrics while varying
the window size from 100 to 100k. Figure 7 confirms that the
overhead is negligible (< 285ns), and can be easily amortized
by a multi-threaded environment.

Regarding the memory overhead, each allocation context
has a footprint of≈ 1KB. As the amount of allocation context
is limited by the amount of allocation sites, we consider the
memory overhead of the CollectionSwitch non-significant
for real applications.

24

CGO’18, February 24–28, 2018, Vienna, Austria Diego Costa and Artur Andrzejak

Table 5. Results of our approach on DaCapo. Section "Original Run" reports the execution time (T) and the peak of memory
consumption (M) of the original Dacapo run. Section "Full CollectionSwitch" shows the results for the full optimization level
(FullAdap) under both selection rules Rt ime and Ralloc . Section "InstanceAdap " shows the results for lower optimization level,
using only adaptive instances. The column "# Target Alloc." states the number of modified target allocation sites. We present
the gain/loss percentages for the significant differences (Tukey HSD test [20]) compared to the original run (positive values
are better). Non-significant differences are reported as –.

Bench
Original Run Full CollectionSwitch (FullAdap) InstanceAdap

Input #Target. Rt ime Ralloc
Size Alloc. T(s) M(MB) T1(s) M1(MB) T2(s) M2(MB) T3(s) M3(MB)

avrora large 7 4.1 72.4 4.2 – 72.1 – 4.4 -7% 65.4 +10% 4.4 -7% 64.9 +10%
bloat large 17 30.3 96.7 28.9 – 96.9 – 26.6 +12% 89.4 +8% 29.5 – 89.6 +8%
fop default 15 0.5 53.4 0.5 – 57.0 -7% 0.5 – 53.9 – 0.5 – 53.8 –
h2 large 10 40.1 509.0 38.3 +6% 508.7 – 44.6 -11% 470.1 +8% 44.9 -12% 493.2 +3%
lusearch large 12 3.6 282.4 3.1 +15% 269.4 +5% 3.4 +6% 268 +5% 3.5 – 275.7 +2%

Table 6. Most commonly performed transitions (AL = Ar-
rayList, LL = LinkedList, HS = HashSet, HM = HashMap).

Benchmark Rt ime Ralloc
avrora HS → OpenHashSet HS → AdaptiveSet
bloat LL → AL HS → AdaptiveSet
fop AL → AdaptiveList AL → AdaptiveList
h2 AL → AdaptiveList HS → ArraySet
lusearch HM → OpenHashMap HM → AdaptiveMap

6 Related Work
Offline Collection Selection. A substantial body of work
has been conducted on proposing approaches that monitor
the application usage and report beneficial code transforma-
tions through an offline model. Liu and Rus [17] provide an
analysis tool that identifies suboptimal patterns on C++ in-
cluding patterns related with STL data structures. Shacham et
al. [22] presented Chameleon, a tool that uses both collection
traces and heap analysis to select the best collection variant,
given a pre-defined set of rules. In 2011, Jung et al. proposed
Brainy [15], an approach that relies on a machine-learning
model to advise the developer. Similarly to our approach,
Brainy uses a set of benchmarks to analyze the performance
based on the specified hardware. Moreover, approaches such
as SEED [18] use exhaustive search to reduce the energy
consumption and Basios et. al [2] uses a genetic-algorithm
to recommend collections on a multi-optimization problem.
Aside from tackling the same problem, our approach is

fundamentally different than the abovementionedworks due
to two aspect. First, our framework is able to automatically
apply the analyzed optimizations, going one step further
towards the auto-tuning of applications. Second, we perform
both monitoring and optimization at runtime, adapting the
collections to the current application demand.

Adaptive Collection Selection. Xu [25] and Orsterlund
et. al [21] describe approaches most closely related to ours.
CoCo [25] was the first fully automated approach to tackle
the collection selection in Java and served as an inspiration

for CollectionSwitch. It monitors the application usage at the
instance level, where each collection carries multiple data
structure representations and gradually transitions to the
most appropriate when it seems fit. Orsterlund et. al [21]
uses context composition to identify scenarios inwhich trans-
forming the collection would lead to performance benefits.
Our work extends the adaptivity proposed of the collec-

tion instance to the allocation context, allowing us to reduce
the impact of the adaptive collections and propose an au-
tomated method for both time and memory improvement.
Our framework can be combined with the adaptive instances
proposed by Xu [25] and Osterlund [21], by including their
adaptive implementations in our set of variant candidates.

Collections Inefficiencies. Researchers have explored
multiple solutions to identify and fix collection inefficiencies,
Xu et al [26] have proposed the use of static and dynamic
analysis to identify underutilized and overpopulated collec-
tions. Other authors have identified inefficiencies within the
standard Java implementation [10], and have proposed the
use of alternative collections as a beneficial optimization
technique [6]. We incorporate some of those works’ findings
when selecting our variants, but we have yet to explore the
benefits of fine tuning collection parameters.

7 Conclusions and Future Work
In this work we presented CollectionSwitch, a framework
for runtime selection of collection implementations for Java
applications. Our framework monitors the workloads for in-
stantiated collections and selects the collection variants used
for future allocations according to the performance goals
expressed by users in form of rules. While implemented for
Java collections, the concept of exploring allocation-site reg-
ularities can be applied to different programming languages
and domains.
Our future work will aim to expand the performance

model of the CollectionSwitch to other cost dimensions such
as energy usage. We will also address a wider set of candidate
collections, including concurrent and sorted collections.

25

CollectionSwitch CGO’18, February 24–28, 2018, Vienna, Austria

References
[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,

Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Lan-
guage and Compiler for Algorithmic Choice. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’09). ACM, New York, NY, USA, 38–49.
https://doi.org/10.1145/1542476.1542481

[2] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.
2017. Optimising Darwinian Data Structures on Google Guava. Springer
International Publishing, Cham, 161–167. https://doi.org/10.1007/
978-3-319-66299-2_14

[3] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. 2006. The DaCapo Benchmarks: Java Benchmarking De-
velopment and Analysis. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA ’06). ACM, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[4] Joshua Bloch. 2008. Effective Java (2Nd Edition) (The Java Series) (2
ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[5] Adriana E. Chis, NickMitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy. 2011. Patterns of Mem-
ory Inefficiency. In Proceedings of the 25th European Conference on
Object-oriented Programming (ECOOP’11). Springer-Verlag, Berlin, Hei-
delberg, 383–407. http://dl.acm.org/citation.cfm?id=2032497.2032523

[6] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. 2017.
Empirical Study of Usage and Performance of Java Collections. In
Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering (ICPE ’17). ACM, New York, NY, USA, 389–400.
https://doi.org/10.1145/3030207.3030221

[7] Mattias De Wael, Stefan Marr, Joeri De Koster, Jennifer B. Sartor, and
Wolfgang De Meuter. 2015. Just-in-time Data Structures. In 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!) (Onward! 2015). ACM, New
York, NY, USA, 61–75. https://doi.org/10.1145/2814228.2814231

[8] Eclipse Foundation. 2016. Eclipse Collections. https://www.eclipse.
org/collections/. (2016). [Online; accessed 10-September-2017].

[9] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
Rigorous Java Performance Evaluation. In Proceedings of the 22Nd
Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications (OOPSLA ’07). ACM, New York, NY, USA,
57–76. https://doi.org/10.1145/1297027.1297033

[10] Joseph Gil and Yuval Shimron. 2012. Smaller Footprint for Java Collec-
tions. In Proceedings of the 26th European Conference on Object-Oriented
Programming (ECOOP’12). Springer-Verlag, Berlin, Heidelberg, 356–
382. https://doi.org/10.1007/978-3-642-31057-7_17

[11] Google. 2013. Google HTTP Client Library for Java. https://github.
com/google/google-http-java-client. (2013). [Online; accessed 10-
September-2017].

[12] Stanford NLP Group. 2013. Stanford CoreNLP. https://github.com/
stanfordnlp/CoreNLP. (2013). [Online; accessed 10-September-2017].

[13] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. 2016. Energy Profiles of Java Col-
lections Classes. In Proceedings of the 38th International Conference on

Software Engineering (ICSE ’16). ACM, New York, NY, USA, 225–236.
https://doi.org/10.1145/2884781.2884869

[14] Canturk Isci, Alper Buyuktosunoglu, and Margaret Martonosi. 2005.
Long-Term Workload Phases: Duration Predictions and Applications
to DVFS. IEEE Micro 25, 5 (Sept. 2005), 39–51. https://doi.org/10.1109/
MM.2005.93

[15] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and San-
tosh Pande. 2011. Brainy: Effective Selection of Data Structures. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’11). ACM, New York, NY,
USA, 86–97. https://doi.org/10.1145/1993498.1993509

[16] Roman Leventov. 2013. Koloboke. https://github.com/leventov/
Koloboke. (2013). [Online; accessed 10-September-2017].

[17] Lixia Liu and Silvius Rus. 2009. Perflint: A Context Sensitive Perfor-
mance Advisor for C++ Programs. In Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO ’09). IEEE Computer Society,Washington, DC, USA, 265–274.
https://doi.org/10.1109/CGO.2009.36

[18] Irene Manotas, Lori Pollock, and James Clause. 2014. SEEDS: A
Software Engineer’s Energy-optimization Decision Support Frame-
work. In Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE 2014). ACM, New York, NY, USA, 503–514.
https://doi.org/10.1145/2568225.2568297

[19] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the
Limits of Health. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
(OOPSLA ’07). ACM, New York, NY, USA, 245–260. https://doi.org/10.
1145/1297027.1297046

[20] Douglas C. Montgomery. 2006. Design and Analysis of Experiments.
John Wiley & Sons.

[21] Erik Österlund and Welf Löwe. 2013. Dynamically Transforming Data
Structures. In Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE’13). IEEE Press, Piscat-
away, NJ, USA, 410–420. https://doi.org/10.1109/ASE.2013.6693099

[22] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon:
Adaptive Selection of Collections. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’09). ACM, New York, NY, USA, 408–418. https:
//doi.org/10.1145/1542476.1542522

[23] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair,
and Brad Calder. 2003. Discovering and Exploiting Program Phases.
IEEE Micro 23, 6 (Nov. 2003), 84–93. https://doi.org/10.1109/MM.2003.
1261391

[24] Sebastiano Vigna. 2016. fastutil: Fast and compact type-specific col-
lections for Java. http://fastutil.di.unimi.it/. (2016). [Online; accessed
10-September-2017].

[25] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java
Collections. In Proceedings of the 27th European Conference on Object-
Oriented Programming (ECOOP’13). Springer-Verlag, Berlin, Heidel-
berg, 1–26. https://doi.org/10.1007/978-3-642-39038-8_1

[26] Guoqing Xu and Atanas Rountev. 2010. Detecting Inefficiently-used
Containers to Avoid Bloat. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’10). ACM, New York, NY, USA, 160–173. https://doi.org/10.
1145/1806596.1806616

26

https://doi.org/10.1145/1542476.1542481
https://doi.org/10.1007/978-3-319-66299-2_14
https://doi.org/10.1007/978-3-319-66299-2_14
https://doi.org/10.1145/1167473.1167488
http://dl.acm.org/citation.cfm?id=2032497.2032523
https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1145/2814228.2814231
https://www.eclipse.org/collections/
https://www.eclipse.org/collections/
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1007/978-3-642-31057-7_17
https://github.com/google/google-http-java-client
https://github.com/google/google-http-java-client
https://github.com/stanfordnlp/CoreNLP
https://github.com/stanfordnlp/CoreNLP
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1109/MM.2005.93
https://doi.org/10.1109/MM.2005.93
https://doi.org/10.1145/1993498.1993509
https://github.com/leventov/Koloboke
https://github.com/leventov/Koloboke
https://doi.org/10.1109/CGO.2009.36
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/1297027.1297046
https://doi.org/10.1145/1297027.1297046
https://doi.org/10.1109/ASE.2013.6693099
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1109/MM.2003.1261391
https://doi.org/10.1109/MM.2003.1261391
http://fastutil.di.unimi.it/
https://doi.org/10.1007/978-3-642-39038-8_1
https://doi.org/10.1145/1806596.1806616
https://doi.org/10.1145/1806596.1806616

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Collection Selection Problem

	3 Approach
	3.1 Adaptation on Allocation Site-Level
	3.2 Adaptation on Instance-Level via Adaptive Collections

	4 Implementation
	4.1 Performance Models via Benchmarking
	4.2 The CollectionSwitch Library
	4.3 Adaptive Allocation Context
	4.4 Limitations

	5 Evaluation
	5.1 Micro-benchmarks
	5.2 Evaluation on Real Applications
	5.3 Overhead of the CollectionSwitch Framework

	6 Related Work
	7 Conclusions and Future Work
	References

