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Abstract Despite huge software engineering efforts and programming
language support, resource and memory leaks are still a troublesome issue,
even in memory-managed languages such as Java. Understanding the
properties of leak-inducing defects, how the leaks manifest, and how they are
repaired is an essential prerequisite for designing better approaches for
avoidance, diagnosis, and repair of leak-related bugs.

We conduct a detailed empirical study on 491 issues from 15 large open-
source Java projects. The study proposes taxonomies for the leak types, for the
defects causing them, and for the repair actions. We investigate, under several
aspects, the distributions within each taxonomy and the relationships between
them. We find that manual code inspection and manual runtime detection are
still the main methods for leak detection. We find that most of the errors
manifest on error-free execution paths, and developers repair the leak defects
in a shorter time than non-leak defects. We also identify 13 recurring code
transformations in the repair patches. Based on our findings, we draw a variety
of implications on how developers can avoid, detect, isolate and repair leak-
related bugs.
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1 Introduction

Leaks are unreleased system resources or memory objects which are no longer
used by an application. In memory-managed languages such as Java, C#, or
Go, a garbage collector handles memory management. Garbage collector uses
object reachability to estimate object liveness. It disposes of any heap objects
which are no longer reachable by a chain of references from the root objects.
However, if an unused object is still reachable from other live objects, the
garbage collector cannot reclaim the space. Aside from memory, finite system
resources such as file handles, threads, or database connections require explicit
management specified in the code. It is the responsibility of the programmer
to dispose of the acquired resource after using it, otherwise, a resource leak is
likely.

Leak-related bugs are severe (Tan et al. 2014) and can finally result in
performance degradation and program crash. Hence, they should be resolved
at an early stage of development. However, due to their non-functional
characteristics, leaks are likely to escape traditional testing processes and
become first visible in a production environment. The root cause of a
memory leak can differ from the allocation which exhausts the
memory (Jump and McKinley 2007). Some leaks can only be triggered if an
abnormal behavior occurs such as an exception or a race condition. These
factors make leak diagnosis hard and error-prone.

Defects induced by memory and resource leaks are among the important
problems for both researchers and practitioners. Microsoft engineers consider
leak detection and localization as one of the top ten most significant
challenges for software developers (Lo et al. 2015). This problem is addressed
by various researchers, tools, and programming languages. Many previous
works targeted memory and resource leak diagnosis by leveraging static and
dynamic analysis. Static analysis is used for leak detection via finding
unclosed resources on different execution paths (Dillig et al. 2008; Torlak and
Chandra 2010; Shaham et al. 2003; Cherem and Rugina 2004; Yan et al.
2014; Weimer and Necula 2004). The main challenge of static analysis is the
lack of scalability and high rate of false positives. To mitigate this issue,
researchers apply dynamic analysis techniques for leak diagnosis (Hauswirth
and Chilimbi 2004; Bond and McKinley 2006; Novark et al. 2009; Jump and
McKinley 2007; Mitchell and Sevitsky 2003; Xu and Rountev 2008; Fang
et al. 2015).

Programming languages provide support for programmers to prevent
occurrences of leak-inducing defects. For instance, Java 7 introduces a new
language construct, called try-with-resources1 to dispose of the objects that
implement the autoclosable interface. Various open-source or proprietary
tools (e.g., FindBugs2, Infer3) also aim to help programmers to find the

1 https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
2 http://findbugs.sourceforge.net
3 http://www.fbinfer.com
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potential leaks in the software codebase. For example, FindBugs provides
some rules4 to warn programmers about potential file descriptor leaks.

Despite the above-mentioned academic work, language enhancements,
and tool supports, a number of challenges are still open. The impact of these
efforts depends on whether they target prevalent or rare issue types, whether
they can handle difficult cases, and whether their assumptions are realistic
enough to be applicable in practice. Programming language enhancements
such as try-with-resources or tool support such as FindBugs help to find
only the resource leaks and no memory leaks. Many of the academics work
are motivated by anecdotal evidence or by empirical data collected only from
small sets of defects. For example, Xu and Rountev (2008) propose a method
for detecting memory leaks caused by obsolete references from within object
containers but provide only limited evidence that this is a frequent cause of
leak-related bugs in real-world applications. As another example,
Leakbot (Mitchell and Sevitsky 2003) introduces multiple sophisticated
object filtering methods based on observations derived from only five large
Java commercial applications.

A systematic empirical study of a large sample of leak-related defects from
real-world applications can help both researchers and practitioners to have a
better understanding of the current challenges on leak diagnosis. We believe
such a study can be beneficial in the following directions:
Benefit 1. A representative study can characterize the current approaches for
leak diagnosis used in practice. This can guide researchers to find limitations
of leak detection approaches and motivate further improvements. The results
would provide a comprehensive basis for the design and evaluation of new
solutions.
Benefit 2. It helps programmers to avoid mistakes made by other
programmers and shows some of the best practices for leak diagnosis.
Benefit 3. It can be used as a verification for the assumptions used in
previous work. For example, it is interesting to verify empirically whether
there is a large number of leaks caused by collection mismanagement in
real-world applications. The positive answer to this could confirm the
assumption of Xu and Rountev (2008) on memory leak detection.

To the best of our knowledge, the research body of empirical studies on
resource and memory leak-related defects is relatively thin in comparison with
the large body of studies about other bug types (e.g., semantic or performance
bugs). The existing studies (Machida et al. 2012; Tan et al. 2014) provide only
limited information about characteristics of detection types, root causes, and
repair actions of leak defects. To fill this gap, we conduct a detailed empirical
study on 491 real-world memory and resource leak defects gathered from 15
large, open-source Java applications.

We manually study the collected issues and their properties: leak types,
detection types, common root causes, repair actions, and complexity of fix
patches. Based on our findings, we draw several implications on how to improve

4 http://findbugs.sourceforge.net/bugDescriptions.html
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avoidance, detection, localization, and repair of leak defects. In particular, this
study tries to answer the following research questions:

. RQ1. What is distribution of leak types in studied projects?

. RQ2. How are leak-related defects detected?

. RQ3. To what extent are the leak-inducing defects localized?

. RQ4. What are the most common root causes?

. RQ5. What are the characteristics of the repair patches?

. RQ6. How complex are repairs of the leak-inducing defects?

The preliminary idea of this work is presented in a two-page short paper in
ICSE 2018 (Ghanavati et al. 2018). This work provides the following
contributions:
Characterization study. We conduct an empirical study on 491 bugs from
15 mature, large Java applications. To the best of our knowledge, this is the
first work which studies characteristics of leak-related bugs from real-world
applications in a comprehensive way while using a large set of issues from
diverse open-source applications.
Taxonomies. We propose taxonomies for leak types (Section 4.1), detection
types and methods (Section 4.2), root causes (Section 4.4), and repair
actions (Section 4.5).
Analysis.We investigate the distributions of leaks across the categories within
each taxonomy and the relation between the taxonomies. Our findings show
that source code analysis and resource monitoring are the main techniques to
detect leaks. Our analysis using a state-of-the-art resource leak detection tool
(i.e., Infer) highlights that the static analysis tools require further improvement
to detect different leak types in practice. We find that 76% of the leaks are
triggered during the error-free execution paths. We identify 13 recurring code
transformations in the repair patches. We also show that developers resolved
the studied issues in about 6 days on the median.
Implications. We use our findings to draw a variety of implications on the
leak prevention and diagnosis for both researchers and
practitioners (Section 5).
Replicability. To make our study replicable and reusable for the community,
we make the dataset and the results available online5.

This paper is organized as follows. Section 2 provides a short background
about leak definition and issues in the bug tracking systems. Section 3 describes
the design of our empirical study. In Section 4, we present the answers to the
research questions. In Section 5, we present the implications drawn from our
observations and findings. Section 6 discusses potential threats to the validity
of our study. Section 7 surveys related work. Finally, Section 8 concludes the
paper.

5 https://github.com/heiqs/leak_study
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2 Background

2.1 Leak definition

Leaks occur due to mismanagement of memory or finite systems resources. In
this section, we briefly explain these two types.
Memory leak. Contrary to the unmanaged languages such as C or C++ in
which programmer is responsible for freeing the memory, in
memory-managed languages such as Java or C#, a garbage collector reclaims
the space. A programmer can rely on the garbage collector to release
references due to dangling pointers or lost pointers. However, if the
references to the unused objects are present in the running process, they
cannot be garbage-collected. As a sequence, a memory leak might be
triggered. In other words, a memory leak in Java occurs when a process
maintains unnecessary references to some unused objects.
Resource leak. In Java, finite system resources like connections, threads, or
file handles are wrapped in special handle objects. Programmer accesses such
a resource by normal object allocation. However, in contrast to memory
management, the developer should dispose of a system resource by making
an explicit call to the disposal method of the handle object (or by ensuring
that a thread has stopped). Besides this, all unnecessary references to such
objects should be removed to prevent the potential memory leak. Hence,
a resource leak occurs when the programmer forgets to call the respective
close method for a finished handle object. Similar to the memory leak, a
resource leak gradually depletes system resources which degrades
performance and can lead to a failure.

In this paper, we use the term leak for both memory and resource leaks.
We also occasionally use the term disposing of an object for either closing a
resource or releasing (deallocating) memory (in Java, by removing all
references to an object).

2.2 Issue Report

Modern projects often use an Issue Tracking System (ITS) to collect the
issues reported by users, developers, or software quality teams. An issue
typically corresponds to a bug report or a feature request. Bugzilla6, JIRA7,
and GitHub issue tracker8 are examples of ITS systems. Each issue report in
the bug tracker is identified with a unique identifier. For example, in JIRA,
this is a combination of the project name and a number (e.g., SOLR-1042).
In GitHub, an identifier is a number with a preceding hashtag (e.g., issue
#1865 in RxJava project). An issue report in Jira contains a variety of
information such as title, description, comments, and links to the related fix

6 https://www.bugzilla.org/
7 https://issues.apache.org/jira/projects/
8 https://github.com/
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1142_close_single_use_activations_draft.txt 10/Jul/06 21:172 kB

metadataloop.java 23/Mar/06 03:080.6 kB

When calling a DatabaseMetaData method that returns a ResultSet, 
memory is leaked. A loop like this (using the embedded driver)

while (true)
{ ResultSet rs = dmd.getSchemas(); rs.close(); }

will eventually cause an OutOfMemoryError.

Metadata calls leak memory
Derby DERBY-1142

Details

Type:  Bug Status: CLOSED

Priority:  Minor Resolution: Fixed

Affects Version/s: 10.1.2.1, 10.2.1.6 Fix Version/s: 10.2.1.6

Component/s: JDBC

Labels: None

Description

Attachments





Activity

All Work Log History Activity TransitionsComments 

 added a comment - 23/Mar/06 03:08

Attached repro. With Derby 10.1.2.1 and Sun JVM 1.4.2, 
OutOfMemoryError was thrown after about 80000 calls to 
DatabaseMetaData.getCatalogs().

 Knut Anders Hatlen

 added a comment - 23/Mar/06 21:30

The direct cause of the memory usage is in the org.apache.derby.impl.sql.conn.GenericLanguageConnectionContext
class, more specifically its member "acts", which is a Vector of Activation instances. It seems one Activation is added to
the vector for every dmd.getSchemas() execution, but they are never removed. I've drilled down to this using NetBeans'
memory profiler and debugger and IBMs HeapRoots utility in concert. While I can hunt through heap dumps I can't say
that I know enough about Derby internals yet to suggest how to fix this. I've tried explicitly closing the preparedstatement
in DatabaseMetaData before returning, but to no effect. I need some time to figure out how all these things (activations,
prepared statements, connections and connection contexts) fit together. =)

 Anders Morken

 added a comment - 23/Mar/06 23:52

Thanks for looking into this, Anders!

The activation is removed from acts when Activation.close() is 
called. Normally, EmbedResultSet.close() calls theResults.finish() 
(implemented in BasicNoPutResultSetImpl), which calls 
activation.close(). From BasicNoPutResultSetImpl.finishAndRTS():

if (isTopResultSet && activation.isSingleExecution()) 
activation.close();

For the metadata query, isSingleExecution() returns false, hence 
activation close() isn't called when the result set is closed It

 Knut Anders Hatlen

Fig. 1 An issue report from JIRA.

patches. It also contains metadata information such as type, status, priority,
resolution, and associated timestamps (e.g., created or resolved
timestamps). Figure 1 shows a snippet of an issue report from Jira. All the
information provided in issue reports makes the issue tracker a rich
environment to get more insights on bugs and their corresponding repairs.

3 Empirical Study Design

In this section, we describe the design of our empirical study. Figure 2 gives
an overview of our methodology. In the remainder of this section, we illustrate
the research questions, studied applications, and data collection process.

3.1 Studied Projects

We perform a study on 15 open-source Java projects hosted in two major
repositories, Apache and GitHub. We investigate the leak-related issues from
a wide variety of software categories to ensure the diversity of the studied
projects. Table 1 lists the studied projects.

We study these projects for two reasons. First, they are large-scale and
open-source projects with a mature codebase with years of development. We
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Selecting projects

Java 
projects 

in Apache

 Manually select 
15 Java projects

Collecting data

Issue 
summaries

Issue 
descriptions

Issue 
comments

Issue 
patches Timestamps

Filtering issues

Dataset with 
491 issues

Search 
keyword “leak”

Filter issues 
with type “Bug”

Filter issues with 
resolution “Fixed”

Remove
false positives

Research Questions

RQ2RQ1 RQ3 RQ4 RQ5 RQ6

Collecting Timestamps

Collect timestamps 
of all issues

Fig. 2 Overview of the empirical study design.

believe that by using such a well-established and well-developed applications,
we can get results representative for mature Java projects. Column #kLOC in
Table 1 shows the size of the Java source code of the studied projects ranging
between 74 to over 1200 kLOC. For the Github projects, the total number of
stars is more than 100k.

Second, their issues are reported and tracked in a bug tracking system.
Similar to other bug trackers (e.g., Bugzilla), reports in JIRA or GitHub bug
tracker are well-described and provide sufficient information to answer the
research questions investigated in this study.

3.2 Research Questions

The following research questions guide our study:
RQ1. What is distribution of leak types in studied projects?
In Section 4.1, we analyze the dominant leak types in each project. We use
this analysis in the next research questions to distinguish the properties of
different leak types.
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Table 1 Overview of studied projects. The Java LOC for each project is obtained from
Open Hub.

Project Category First Commit #Committers #kLOC
AMQ Distributed messaging 2004 58 1158
CASSANDRA Distributed database 2009 45 313
CXF Web service 2007 38 674
DERBY Relational database 2004 44 689
HADOOP Distributed computing 2006 163 1260
HBASE Distributed database 2007 57 1115
HIVE Data warehouse 2009 63 1074
HTTPCOMP. Network client/server 2004 18 115
LUCENE Search framework 2004 67 557
SOLR Search framework 2008 67 416
Realm Java Mobile database 2012 14 116
Spring Boot Application framework 2012 180 311
Logstash Data Processing 2009 43 74.6
RxJava Reactive programming 2013 65 279
Selenium Browser driver 2006 115 703

RQ2. How are leak-related defects detected? Understanding different
detection types can help leak detection approaches to improve detection
accuracy. In Section 4.2, we investigate how developers or users report the
leak-inducing defects and how the leaks manifest at runtime. We analyze
different detection and manifestation types and study their relation to the
leak types.
RQ3. To what extent are the leak-inducing defects localized? Bug
localization is the first step in bug diagnosis. The extent of the bug can highly
affect the number of files that need to be fixed to repair the bug. In this
question, we analyze the locality of leak-inducing defects (Section 4.3).
RQ4. What are the most common root causes? Section 4.4 describes
the common root causes of leak defects. We investigate the prevalence of each
root cause and their relation to the leak types.
RQ5. What are the characteristics of the repair patches?
In Section 4.5, we identify the repair actions applied by the developers to
repair the leak-related defects and investigate the frequency of each
considering different leak types. We also search to find recurring code
transformations in the repair patches. We identify 13 common repair
patterns from our dataset. In this question, we investigate whether the
automated program repair techniques (i.e., the process of providing the
repair patches automatically) such as template-driven patch generation are
applicable for fixing the leak-related defects.
RQ6. How complex are repairs of the leak-inducing defects?
In Section 4.6, we measure the code churn, change entropy, and diagnosis
time to assess the complexity of the changes needed to repair the
leak-inducing defects. This analysis provides insights about the difficulty of
repairing the leak-related defects and shows which type of leaks can be
repaired with less effort in terms of time and amount of code changes.
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3.3 Data Extraction

For the Apache projects, we collected the leak-related issues from the bug
tracker reported until June 2016. For GitHub projects, we collected the issues
reported until January 2019.

To build a suitable dataset for our study, we apply a four-step filtering
methodology: (1) keyword search, (2) issue type filtering, (3) resolution
filtering, and (4) manual investigation. This four-step filtering method yields
a dataset with 491 leak-related issues, each representing a unique leak bug
report (i.e., none are duplicates of another). We make the dataset available
online9.
Keyword search. We use a simple heuristic and select issues that contain
the keyword “leak” in the issue title or issue description. The keyword search
is a well-known method used by previous empirical studies (Jin et al. 2012a;
Zhong and Su 2015; Nistor et al. 2013) to filter the issues of interest from the
others. It is worth mentioning that we investigated other leak-related
keywords (unreleased, out-of-memory, OOM, closed, etc.). However, these
keywords yield a dataset with a high number of false positives. For example,
the keyword “unreleased” is used in the title of the issue report CXF-777610:
“Download page should not link to unreleased code”. This is obvious that this
issue has no relation to this study. Pruning of such issues is time-consuming
and requires a huge amount of manual effort. On the other hand, it is
possible that we skip some leak-related issues due to our simple keyword
search. For example, YARN-525711 refers to some unreleased resources which
are fixed. Although this is a leak-related issue, the term leak is not
mentioned in the issue title or description.

Despite the simplicity of keyword search, this heuristic proved to be highly
precise due to the high quality of issue reports and related data in the studied
projects. Wu et al. (2011) highlight that even simple heuristics can yield the
same precision and recall as more sophisticated search techniques when applied
to a well-maintained bug tracker. Using the keyword search, we identify 1255
leak-related issues. Column “#Issues” in Table 2 shows the number of filtered
issues for each project.
Issue type filtering. Each issue in the bug tracker can be classified as “Bug”,
“Task”, “Test”, and so on. As we are only interested in leak-related bugs, we
first filter issues with type “Bug”. Among the 1255 issues filtered by keyword
search, there are 838 issues labeled as a bug (column “#Bugs” in Table 2).
Issue resolution filtering. To analyze how developers repair a leak defect
we need to restrict our analysis to fixed bugs. For this, we filter issues with the
resolution label “Fixed” for Apache projects and “Closed” for GitHub projects.
This reduces the dataset to 591 issues (column “#Fixed” in Table 2).

9 https://github.com/heiqs/leak_study
10 https://issues.apache.org/jira/browse/CXF-7776
11 https://issues.apache.org/jira/browse/YARN-5257
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Table 2 Studied projects with statistics on number of issues (explained in Section 3.3).
Columns “#MLeak”, “#RLeak”, and “Total” show the numbers of memory and resource leak
issues per application, and their totals, respectively.

Project #Issues #Bugs #Fixed #MLeak #RLeak Total
AMQ 123 116 88 54 26 80
CASSANDRA 77 65 45 19 16 35
CXF 62 61 44 29 8 37
DERBY 50 36 23 12 4 16
HADOOP 236 201 132 43 76 119
HBASE 92 65 44 11 29 40
HIVE 78 69 47 19 25 44
HTTPCOMP. 31 28 24 8 12 20
LUCENE 77 65 42 13 21 34
SOLR 74 60 33 11 16 27
Realm Java 76 15 15 4 2 6
Spring Boot 94 17 16 2 10 12
Logstash 67 25 23 8 4 12
RxJava 100 14 14 5 3 8
Selenium 18 1 1 0 1 1
Total 1255 838 591 238 253 491

Manual investigation. In the final step, we remove the false positives from
our dataset. We manually filter out the following issues:

– Non-leak-related bugs retrieved by our keyword search heuristic. For
instance, in issue CXF-339012, the term leak is used in “information leak”
which is not related to this study.

– Wrongly reported leaks. These issues should be tagged as “Invalid”, but are
closed in the bug tracker without correct labeling.

3.4 Tagging Leak-Related Defects

To analyze the properties of the leak-related defects, we need to classify the
issues for each dimension of interest (i.e., leak type, detection type, detection
method, defect type, and repair type). However, we only have qualitative
information such as issue description, developers discussions, and repair
patches. There is no label provided in the bug tracker for classification of the
attributes that we are interested in reported leaks. To derive properties for
the bugs in our dataset, we need to quantify the qualitative information. For
this purpose, we perform an iterative process similar to Open
Coding (Seaman 1999; Seaman et al. 2008). In our study, the input of the
coding process for each issue is issue summary, issue description, developers
discussions, and repair patches. The first author of the paper (a Ph.D.
student), classified a sample set of the issues to determine the possible
categories for each dimension. After identifying the initial types for each
category, the second and the third authors (a Ph.D. student and an

12 https://issues.apache.org/jira/browse/CXF-3390
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Table 3 Cohen’s kappa measurement.

Dimension Cohen’s Kappa

Leak Type (RQ1) 0.86
Detection Type (RQ2) 0.83
Detection Method (RQ3) 0.70
Defect Type (RQ4) 0.69
Repair Type (RQ5) 0.57

undergraduate student) join the first author to discuss the categories and
label the remaining issues. We held many meetings, spent many hours, and
performed multiple iterations to achieve cohesive labeling.

The tagging process is iterative. Each time a new type is identified, the
coders (first three authors) verify it in a decision-making meeting. If a
majority of the coders agree on the new type, they go through all the
previously tagged issues and check if the issues should be tagged with the
new type. This also minimizes the threat of human error during the labeling
process. To further reduce the error probability and in case of difficulty in
classifying of the issues, all the coders check and discuss the complex issues
to find the appropriate categories. The conflicts were resolved by discussing
and coming to an agreement.

To validate the manual labeling process, we apply the following
procedure. The first and second author perform a classification of a
statistically representative sample of the dataset with a confidence level of
95% and a confidence interval of 10%. This results in a sample set of 80 out
of 491 issues. We calculate the inter-rater agreement with Cohen’s kappa
metric (Cohen 1960; Artstein and Poesio 2008). Table 3 shows the result of
our analysis. The lowest Cohen’s kappa value is for the repair type, although
it shows a moderate agreement between the two coders. The reason for
disagreements is that the categories in this attribute are not mutually
exclusive. Therefore, there is a probability that each coder has a different
interpretation of the same issue. After rating, the two raters discussed their
disagreements to reach consensus.

3.5 Uniqueness of categories

During tagging task, we encounter the issues with the possibility of assigning
them to multiple categories. For example, in Hadoop-683313, a leak is reported
due to the forgotten call to the remove method of a collection. The developers
repaired the bug by adding the remove call in the exception path:� �

−−− src/java/org/apache/hadoop/ipc/Client.java
+++ src/java/org/apache/hadoop/ipc/Client.java
@@ −697,6 +697,7 @@ public class Client {

} else if ( state == Status.ERROR.state) {
call . setException(new RemoteException(WritableUtils.readString( in) ,

WritableUtils . readString ( in))) ;

13 https://issues.apache.org/jira/browse/HADOOP-6833
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+ calls .remove(id);
} else if ( state == Status.FATAL.state) {

// Close the connection
markClosed(new RemoteException(WritableUtils.readString(in) ,� �

One could label this issue as collection mismanagement. However, if the
exception is thrown no leak is triggered. Therefore, we use the underlying
cause as the main root-cause category (here bad exception handling). For the
repair action, we assign a bug to the category used by the developer to repair
the defect. In this example, we label the repair action as remove element.

4 Empirical Study Results

In this section, we answer the research questions. For each research question,
we describe the motivation behind the question, the approach used in
answering the research question, and the findings derived from the analysis.

4.1 RQ1: What is distribution of leak types in studied projects?

Approach. For most of the studied issues, the reporters or developers
explicitly mentioned the leak type. For such cases, we assign the leak type as
reported. In case of no explicit mention of the leak type, we manually
analyze the title, description, and developers discussions to assign the correct
leak type.
Taxonomy of leak types. Our analysis yields a taxonomy of leak types with
the following four categories:
Memory. We group in this category all issues reported due to unreleased
references to Java objects, such as mismanagement of collections or circular
references.
File handle. We group in this category leaks related to file descriptors. These
issues are related to the mismanagement of Java file handlers such as I/O
streams.
Connection. We group in this category leaks triggered by non-closed network
or database connections.
Thread. We group in this category leaks caused by unclosed, yet unused
threads. A thread leak occurs when a no-longer-needed thread is
unnecessarily kept alive. This thread then leaks its internal resources, which
cannot be released by the JVM.
Results. Figure 3 shows the distribution of the leak types for each project.
We use this data to find the dominant leak types in the projects and in the
project categories.

Finding 1. The three leak types corresponding to the resource leaks (i.e.,
file handle, connection, and thread) is the most common leak types in six out
of the ten projects. Resource leaks (with 233 issues) are slightly more reported
than memory leaks (with 219 issues).
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Fig. 3 Frequency of the leak types per project.

Finding 2. Each project shows a distinct distribution of the leak types.
LUCENE and HADOOP have a higher frequency of the file handle leak type
with this leak type corresponding to 55.9% and 42.9% of the issues,
respectively. Projects AMQ (67.5%), CASSANDRA (54.3%), CXF (78.4%),
and DERBY (75.5%) contain more memory leak issues. Connection leaks are
more frequently reported in HBASE (37.5%), HTTPCOMP (30%), and Hive
(27.3%). 10 out of 12 issues in Spring Boot are of type thread leak. This
analysis shows the diversity of the leak types in the studied projects. Even
projects within the same category show different distributions of the leak
types.

Summary. Resource leaks (253 out of 491 issues) are slightly more
often reported than memory leaks (238 issues). Leak type distribution
is different across the projects.

4.2 RQ2: How are leak-related defects detected?

Motivation. Each issue report provides information about leak symptoms,
environmental setup, and methods used to detect a leak. Understanding how
leaks are detected can provide valuable insights on leak diagnosis. It also shows
in which direction the researchers and tool builders should help programmers in
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leak detection. In this question, we want to find whether the leaks are detected
during runtime and whether the static analysis is used for leak detection.
Approach. To find detection type for each issue, we use three data sources:
issue title, issue description, and developers discussions. Using this data, we
analyze the frequency of the detection types, distribution of detection methods,
and their relation to different leak types.
Taxonomy of leak detection. Leak-inducing defects can be discovered
with and without runtime failures or performance degradation. They can be
detected via manual analysis of the source code, an unexpected runtime
failure (in particular, an out-of-memory error), or abnormal usage of
resources. We classify detection types into two major categories: source
code-based detection and runtime detection. In the following, we explain
these two detection types in more detail.
Source code-based detection. In this category, we classify issues such that the
leak detection is performed before execution of the program and there is no
reported runtime information in the issue report, nor reports on leak-related
failures. We observe that issue reporters describe these issues with phrases such
as “can potentially cause a leak” or “can lead to a leak”. The main techniques
to detect leaks prior to the runtime are manual code inspection and static
analysis tools.

Manual inspection of the source code (or code review) is a process in
which developers inspect a set of program elements (e.g., methods, classes) in
order to improve the quality of software (Huizinga and Kolawa 2007;
McConnell 1993; Sommerville 2010). It is one of the most common static
detection methods used by developers in practice. This detection type
requires the knowledge of how a leak can be introduced as well as an
understanding of the application’s behavior. For instance, in AMQ-574514,
manual inspection revealed cases where bad exception handling could yield
resource leaks on the AMQ codebase.

Static analysis tools can be used to identify potential leak defects during
the development process. There are many free and proprietary static analyzers
which are able to detect specific leak types (e.g., FindBugs, Infer).
Runtime analysis. Some leak-related failures are observed and reported when
a user/developer encounters a performance degradation in a production
environment, an out-of-memory error is raised, or a test is failed. Issue
reporters often use phrases such as “consistently observing memory growth”
or “meet memory leak in a production environment”. In these issues, the bug
reporter often provides additional material such as heap profile, memory
dump, a log file, or a stack trace. This supplementary data can help
developers on localizing the root cause of the leak defect more efficiently.
Leaks usually manifest in the runtime with a symptom. From our
observation, we identify three symptoms reported in the issue reports: failing
tests, out-of-memory errors, and warning messages.

14 https://issues.apache.org/jira/browse/AMQ-5745
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The output of a failing test case may expose a leak. The test can be a
system test, a unit test or any other application-provided test. For example,
in LUCENE-325115, a failing unit test exposed a file-handle leak. The user
provided the stack trace of the failing test in the issue report:� �

Testsuite : org.apache.lucene . index .TestAddIndexes
Testcase : testAddIndexesWithRollback(org.apache.lucene . index .TestAddIndexes):
Caused an ERROR
MockDirectoryWrapper: cannot close: there are still open files : {_co.cfs=1}
java . lang .RuntimeException: MockDirectoryWrapper: cannot close: there are still open files : {_co.cfs=1}
at org.apache.lucene . store .MockDirectoryWrapper.close(MockDirectoryWrapper.java:483)� �

In some cases, the growth of memory usage leads to an out-of-memory
(OOM) error during runtime. This is a severe symptom as the underlying
system often crashes when an OOM error occurs. For example,
DERBY-573016 reported a severe memory leak which might lead to a system
crash due to an out-of-memory error. In this issue, the reporter mentioned
that after removing the suspicious call, the test program was successfully
executed with a much lower heap size. We should mention that we only
consider those out-of-memory errors triggered via a resource or memory leak
and not because of misconfigured heap size (which is a configuration error).
The out-of-memory error due to a leak occurs at some point regardless of the
heap size, while the OOM error due to a misconfiguration will not occur with
correct configuration of the heap value. Logstash#517917 is an example of an
OOM error due to a misconfiguration of the heap size for running a specific
task which is fixed by setting the correct value for the heap size.

Developers also implement algorithms for detection of specific leak defects.
They usually warn the user about the potential presence of a leak with a
message during program’s execution. For example, in CXF-570718, a message
warned the user for a potential leak during the performance test of the netty-
http-server module:

15 https://issues.apache.org/jira/browse/LUCENE-3251
16 https://issues.apache.org/jira/browse/DERBY-5730
17 https://github.com/elastic/logstash/issues/5179
18 https://issues.apache.org/jira/browse/CXF-5707
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Table 4 Distribution of detection methods for memory and resource leaks.

Memory Leaks Resource Leaks
Detection Type Detection Method

Source code-based Manual code inspection 68 (28.6%) 113 (44.7%)
detection Static analyzer 0 (0.0%) 1 (0.4%)

Failed test 17 (7.1%) 40 (15.8%)
Runtime detection Out-of-memory error 43 (18.1%) 12 (4.7%)

Warning message 8 (3.4%) 11 (4.3%)
Runtime (exclude above) 102 (42.9%) 76 (30.0%)

”SEVERE: LEAK: ByteBuf.release() was not called before it’s
garbage-collected. Enable advanced leak reporting to find out
where the leak occurred.”

Results. Figure 4 shows the distribution of detection types in relation to
the leak types. Table 4 illustrates the relationship between detection types,
detection methods, and leak types.

Finding 1. More resource leaks (114 issues) are detected via source
code-based detection than memory leaks (68 issues). Runtime detection is
the dominant detection type for detecting memory leaks with 170 out of 238
issues (71.4% of the issues). The reason why more resource leaks are detected
with source code-based detection techniques comes from the difference in
memory and resource management. In Java, a programmer should explicitly
dispose of the resources after usage. Due to explicit management, potential
resource leaks can more often be captured through the code review or using
static analyzers. Contrary to this, the JAVA Virtual Machine (JVM)
manages the heap space and releases the unused objects when they become
unreachable. Detecting unused references with code inspection is a hard task,
as the programmer needs to have a profound understanding of the program’s
workflow.

Finding 2. 309 (about 63%) issues are detected or manifest during the
runtime. In these issues, users often use a third-party memory analyzer (e.g.,
jmap, MAT 19, yourkit20), or OS-specific commands (e.g., lsof ) to verify the
presence of the leaks. The information collected from these tools and
commands can considerably help the developers to reproduce and diagnose
the leak defects.

Finding 3. Users detected leaks in 19 issues (3.9%) via warning
messages. From our dataset, we observe that in three applications,
developers implemented leak detection mechanisms. This result shows that it
is a good practice for developers to provide integrated leak detection
mechanisms to accelerate the diagnosis of leak-related defects.

19 https://www.eclipse.org/mat/
20 https://www.yourkit.com/
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Finding 4. Out-of-memory errors are observed more than three times in
memory leak-related issues. OOM error is one of the most severe leak
symptoms and should be particularly prevented in a production environment.

Finding 5. In 57 (11.6%) issues, users detected the leaks via a test case.
We also observe that for some issues, developers added a test case to the repair
patches for future leak detection. This result shows the possibility of software
tests as a lightweight tool for leak detection. Previous work (Fang et al. 2015;
Ghanavati and Andrzejak 2015) confirm the effectiveness of software tests for
leak detection. The utility of a test case is twofold. First, it can be used as an
oracle for automated leak detection and bug isolation. Second, it can be an
oracle for automated leak repair techniques as they need test cases to verify
the correctness of their proposed fix patches. As leaks are highly environment
- and input - sensitive, the automated test input generation should provide
inputs which can trigger the leaks in different execution paths.

Finding 6. Only in one issue (CASSANDRA-770921), the leak is detected
and reported by a static analyzer. As we only consider the reported issues, we
cannot generalize that the static analysis tools are not used. It is possible that
static analyzers have been employed earlier in the development process, and
all leaks detected were fixed. Still, our finding highlights potentials to improve
the existing static analyzers further as there is still room for improvement. It
is important to know why these tools are not used for other reported issues
with similar characteristics to the detected issue (we further analyze this in
Section 4.7). One reason might be that there are still obstacles in the extensive
use of such debugging tools. Such obstacles can be high false positives, complex
usage procedure, or lack of knowledge about these tools. Researchers or tool
builders should improve current debugging tools to detect not-yet covered
bugs, simplify the tool usage, and spread them widely in the community.

Summary. Source code-based detection is more common in resource
leak detection (45.1%). Runtime detection is the dominant detection
type for memory leaks (71.4%). Out-of-memory errors are observed
about three times more frequently in conjunction with the memory
leaks than with the resource leaks.

4.3 RQ3: To what extent are the leak-inducing defects localized?

Motivation. Fault localization is the first step of bug diagnosis. The locality
of a fault can be defined in different granularity such as statement, method,
and file. In the case of leak-related defects, they can affect a region (e.g.,
multiple modules, classes, etc.) in the codebase of an application (Mitchell and
Sevitsky 2003). Accurate defect localization is vital in providing the correct
repair patch. Otherwise, the patch will not fix the bug completely and even
introduces a new bug (Yin et al. 2011). In this research question, we investigate

21 https://issues.apache.org/jira/browse/CASSANDRA-7709
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Fig. 5 Heatmap of the number of modified Java source code files per project.

the locality of leak-inducing defects. In particular, we want to find out: (1) how
many source code files are changed to repair a defect, and (2) which types of
files are changed in each repair patch.
Approach. To assess the locality of leak defects, we analyze the distribution
of modified source code files. For each issue, we collect the files changed in
the repair patches. We also investigate the file type of modified source files
by collecting the file extensions. We ignore test files in the repair patches if
the tests added or modified for future leak detection and not for repairing
purposes.
Results. Figure 5 shows the heatmap representation of the amount of modified
Java source files for each project.

Finding 1. In 57% of the issues, developers changed only one source code
file to repair the defect. In about 81% of the issues, three source code files are
modified at most. This result implies the high locality of leak-inducing defects
considering file-level granularity.

Finding 2. In 15 issues, developers repaired the defect via adding or
deleting at least one Java source code file. It is interesting to know the
reasoning behind such changes. However, the information for such decisions
is not always provided in the issue reports and reasoning require deep
knowledge about the design and architecture of the project. Our further
analysis shows that the decision of adding or deleting a class is simply a
design decision and it is very particular to the issue being fixed. Here, we
provide three examples of such cases. In CASSANDRA-55222 developer
created a new interface (in a new file) which makes an iterator object to be
closable. In HADOOP-63923 developers redesigned the code with unifying
two existing functionalities. In LUCENE-138324 developers implemented a

22 https://jira.apache.org/jira/browse/CASSANDRA-552
23 https://jira.apache.org/jira/browse/HADOOP-639
24 https://jira.apache.org/jira/browse/LUCENE-1383
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closable Java ThreadLocal as a wrapper for Java ThreadLocal which
wraps the values inside a WeakReference with keeping a strong reference
to the value. In this way, the garbage collector does not reclaim the value
until the close method is called. In general, we could not generalize any
specific rule about adding or deleting files in the repair patches of the studied
issues.

Albeit occurring only in about 3% of the studied issues, such cases require
more sophisticated repair strategies. Most of the current automated program
repair approaches (Weimer et al. 2009; Kim et al. 2013; Le et al. 2016) can
only provide simple repair patches with only one line. Hence, it is still not
feasible for existing automated program repair techniques to provide complex
repair patches such as adding a class.

Finding 3. In 17 issues, no Java source code file is changed. In eight issues,
source code files written in C are modified. In three cases, developers modified
the XML files to use a non-leaky third-party library as a dependency for that
project. 6 issues are repaired by changing source code files written in Scala and
Ruby. The reason for changing different file types is that in some of the studied
projects, specific modules are implemented in different programming languages
than Java. For example, bzip2 (a compression method) implementation in
HADOOP is written in C.

Test cases might also contain a leak in their code. For example, YARN-
2662 reports an issue where the tests do not close a file after reading from
it. We observe 15 issues in our dataset that the repair patches contain only
changes in the test files.

A bug report is labeled as duplicated if it has already been reported in the
bug tracker. However, it can be the case that a reporter reports a bug and this
bug is already repaired in one of the previous releases of the software or the root
cause of the leak is located in a third-party library. In such cases, developers
close the issue as fixed with referring to the software release containing the bug
fix or the non-leaky third-party library. In our study, we find 29 issues of such
cases, i.e., the issues are closed without including a repair patch. It is worth
mentioning that these issues cannot be considered as duplicated because they
are not previously been reported in the bug tracker (i.e., there is no link to
another issue in the bug tracker).

Although only a few defects are repaired by modifying files written in
other programming languages, developers require knowledge of different
programming languages to repair all leak-related defects.

Summary. About 54% of the leak defects are repaired by changing
only one source code file. Only in 12% of the reported leaks, more than
three source files were modified. In about 6% of the issues, files from
other languages, such as C, Scala, and Ruby are modified to fix the
leak-related defect.
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4.4 RQ4: What are the most common root causes?

Motivation. In this research question, we want to find out which root causes
are dominant, and whether there are significant differences in the common
root causes for different leak types.
Approach. To find the root cause, we use three data sources for each issue:
issue title, issue description, and developers discussions. The categories for
root cause are not mutually exclusive. For issues with the possibility of
assignment to multiple categories, we select the most specific category as
explained in Section 3.5.
Taxonomy of defect types. Table 5 lists the taxonomy of the defect types.
We describe the most common root causes here.
Non-closed resource. The programmer should close any system resources such
as file handles, connections, and threads when they are no longer needed.
Otherwise, a resource leak is likely. For example, in HBASE-1283725,
zookeeper connections created in the constructor of ReplicationAdmin
left unclosed.
Bad exception handling. According to Java documentation 26, an exception is
an event which disrupts the normal flow of the program’s instructions. When
an exception is thrown, any resources accessed during the normal execution
of the program remain open. If a programmer does not properly handle the
exceptions, a leak is prone to happen, as shown in the following quote from
an issue report:

“Programmer should handle the exception properly instead of
swallowing it.”

For instance, in LUCENE-314427, FreqProxTermsWriter leaks open
file handle if an exception is thrown during flush().
Collection mismanagement. The mismanagement of elements in a collection
can result in memory leak. Such leak occurs when a programmer assumes
that the garbage collector collects all unused objects, even if they are still
referenced. Leaks due to collection mismanagement can lead to severe memory
waste, in particular when the collection is used as a static member. The reason
is that the static fields are never garbage-collected. Issue YARN-535328 reports
a severe memory leak due to keeping the tokens in the appToken map of the
ResourceManager even after task completion.
Concurrency defect. A leak can be caused by a race condition preventing the
disposal of a resource or releasing references to unused objects. Issue LUCENE-
649929 reports a file handle leak if files are concurrently opened and deleted.

25 https://issues.apache.org/jira/browse/HBASE-12837
26 https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
27 https://issues.apache.org/jira/browse/LUCENE-3144
28 https://issues.apache.org/jira/browse/YARN-5353
29 https://issues.apache.org/jira/browse/LUCENE-6499
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Table 5 Taxonomy of root causes. Column “#Issues” states the total number of issues per
root cause.

Description (Short) #Issues

Non-closed resource at error-free execution (nonClosedRes) 149 (30.35%)

Object not disposed of if exception is thrown (exception) 98 (19.96%)

Dead objects referenced by a collection (collection) 93 (18.94%)

Unreleased reference at error-free execution (unreleasedRef) 59 (12.02%)

A race condition defect (concurrency) 18 (3.67%)

Wrong call schedule of disposal method (callSchedule) 16 (3.26%)

Over-sized cache or buffer (cache) 14 (2.85%)

Incorrect API usage (wrongAPI) 10 (2.04%)

Unreleased reference due to thread-local variable (threadLocal) 10 (2.04%)

Classloader keeps a bi-directional reference to a class (classloader) 10 (2.04%)

Leaks related to Java native interface (jni) 8 (1.63%)

Leak inside a third-party library (leakyLib) 7 (1.43%)
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Fig. 6 Heatmap of defect types and leak types.

Results. We investigate the frequency of the root causes across the leak
types. Table 5 and Figure 6 summarize the results. Table 5 lists the common
root causes and their corresponding number of issues. Figure 6 visualizes the
heatmap of the defect and leak types.

Finding 1. The majority of the defects (about 76% of the cases)
manifest when a normal execution path is exercised. The most common root
cause is also the non-closed resource in a regular (error-free) execution path
(nonClosedRes) with about 30% of the cases. This finding is interesting. The
error-free execution paths are more often executed and checked. Therefore, it
should be less likely for defects to manifest in normal execution
paths (Weimer and Necula 2005). However, our analysis shows that this is
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not the case for leak-related defects. Our analysis shows the value of software
tools and tests which check whether resources are disposed of at the end of
the normal execution paths.

Finding 2. Bad exception handling (exception) is the second-most
frequent root cause with 20% of the issues (93 issues). This even increases to
about 32% of the issues if we only consider resource leaks. We also observe
that this root cause is about 5 times more common for resource leaks than
for memory leaks. One reason for such observation is that - by definition -
exception paths happen in exceptional situations, being less frequently tested
than normal execution paths. Even correctly-behaved programs in normal
execution path can manifest error in exceptional paths (Weimer and Necula
2005, 2004). This observation implies that the proper exception handling
plays an important role in preventing leaks especially resource leaks.

Finding 3. Collection mismanagement (collection) is the most common
root cause for memory leaks (39% of the cases). This finding verifies the
applicability of existing automated approaches for detecting memory leaks
caused by collection mismanagement (e.g., Xu and Rountev (2008)).

Summary. Most leaks are caused by four root causes. Collection
mismanagement (39% of the issues) and non-closed resources (58% of
the issues) are the dominant root causes for memory and resource leaks,
respectively. The majority of the leaks (76% of the cases) manifest in
the regular execution paths.

4.5 RQ5: What are the characteristics of the repair patches?

Motivation. One approach for automated program repair is to search for
common repairs from previous fix patches and provide repair candidates to
fix bugs (Kim et al. 2013; Le et al. 2016; Liu et al. 2013; Selakovic and
Pradel 2016; Song and Lu 2014). Align with this direction, we investigate the
repair patches to check whether there are common patterns for fixing the
leak-inducing defects.
Approach. For each issue in our dataset, we manually check the issue
summary, the issue description, the developer discussions, and the repair
patches to understand the design philosophy of a fix and find the repair
action and corresponding code transformation for each defect. A repair
action corresponds to an abstract description of a fix, while a code
transformation is a concrete instantiation of the repair action. The same
abstract fix can be implemented via different code transformations. For
example, to fix a leak due to a non-closed resource (a defect type), the
developer needs to dispose of the resource (a repair action). Disposing of a
resource can be implemented using a try-finally construct (a possible
code transformation) or a try-with-resources construct (another possible
code transformation).
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Table 6 Taxonomy of repair actions. Column “#Issues” states the total number of issues
per repair action.

Description(Short) #Issues

R1: Dispose of resource in regular execution paths (disposeReg) 111 (22.61%)

R2: Dispose of objects in exceptional path (disposeExcep) 97 (19.76%)

R3: Remove the elements from a collection (removeElm) 104 (21.18%)

R4: Release the reference (releaseRef) 69 (14.05%)

R5: Shutdown thread after finishing the task (threadDown) 45 (9.16%)

R6: Improve thread safety by avoiding race condition (threadSafe) 23 (4.68%)

R7: Use an efficient API to improve memory usage (correctAPI) 12 (2.44%)

R8: Modify strong reference to a weak reference (weakRef) 9 (1.83%)

R9: Use a non-leaky Library (nonLeakyLib) 4 (0.81%)

R10: Bugs not belonging to the above categories (others) 17 (3.46%)

When analyzing the patches, we apply the following considerations. First,
we are only interested in the defects within the codebase of the application.
Hence, we ignore modifications of the test files in the repair patches. Second,
in 29 issues, the defects are already repaired by developers in another version
of the application but were not tagged as “duplicate” in the bug tracker. We
ignore these issues for searching for common code transformation. Every label
is attributed to a specific repair action whenever possible. We categorize the
fix patch to a generic category only when no specific repair action would fit
the repair description.

To identify the common code transformations that may be applied for
fixing multiple issues, we use the open coding methodology. First, we label
each repair patch with all code transformations associated with that patch.
Then, we identify those common transformations that occur repeatedly (more
than once) within our dataset.
Taxonomy of repair actions. Table 6 lists the repair actions. Note that
the repair actions are mutually exclusive. For issues with the possibility of
assignment to multiple categories, we select the most specific category as
explained in Section 3.5. We describe the prevalent actions here.
Dispose of resource on a regular path (disposeReg). Resource leak defects
introduced in regular execution paths can be resolved via simply calling the
disposal method after the resource usage. In Java, this is achieved by calling
the close dispose method. For example, in HADOOP-709030, the
developer refers to closing the I/O streams in a finally block as a good
practice. Following is a partial patch for this issue:� �

−−− org/apache/hadoop/io/BloomMapFile.java
+++ org/apache/hadoop/io/BloomMapFile.java
@@ −186,10 +186,17 @@

@Override
public synchronized void close () throws IOException {

super . close () ;

30 https://issues.apache.org/jira/browse/HADOOP-7090
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− DataOutputStream out = fs.create(new Path(dir, BLOOM_FILE_NAME), true);
− bloomFilter . write (out) ;
− out. flush () ;
− out. close () ;
+ DataOutputStream out =null;
+ try {
+ out = fs. create (new Path(dir, BLOOM_FILE_NAME), true);
+ bloomFilter . write (out) ;
+ out. flush () ;
+ out. close () ;
+ out = null ;
+ } finally {
+ IOUtils .closeStream(out);
+ }� �

Release reference. Any unused object in Java should be reclaimed by GC. If
this object is still reachable by a live object, GC will not release its memory
footprint. In such cases, the responsibility lies on the programmer to release the
references preventing the object for being garbage collected (e.g., by nullifying
the references to the unused objects). For example, HBASE-514131 reports a
memory leak due to keeping references, even the corresponding task is finished.
The fix patch nullifies the no-longer-needed objects. Following is the partial
patch:� �

−−− org/apache/hadoop/hbase/monitoring/MonitoredRPCHandlerImpl.java
+++ org/apache/hadoop/hbase/monitoring/MonitoredRPCHandlerImpl.java
@@ −217,6 +217,13 @@
...
+ @Override
+ public void markComplete(String status) {
+ super.markComplete(status);
+ this .params = null;
+ this .packet = null ;
+ }
+� �

Proper exception handling (disposeExcp). Programmer should dispose of the
objects or resources in all exceptional execution paths. Otherwise, a leak is
likely to happen when an exception is thrown. Issue AMQ-305232 reports a
memory leak in securityContexts. It occurs when the
addConnection() fails after a successful authentication check. The
developer fixed the bug via adding a try-catch block and calling disposal
method in the catch block:� �

−−− org/apache/activemq/security/SimpleAuthenticationBroker.java
+++ org/apache/activemq/security/SimpleAuthenticationBroker.java
@@ −92,7 +92,13 @@

...
− super.addConnection(context, info ) ;
+ try {
+ super.addConnection(context, info ) ;
+ } catch (Exception e) {
+ securityContexts .remove(s);
+ context . setSecurityContext ( null ) ;
+ throw e;
+ }� �

Remove an element from a collection (removeElm). No longer needed members
of a collection should be removed by the programmer, allowing the garbage
collector to reclaim the memory. A common repair action is the call of remove()
method of a collection to clear useless elements from being referenced by the
collection object. For example, in issue YARN-347233, already expired and

31 https://issues.apache.org/jira/browse/HBASE-5141
32 https://issues.apache.org/jira/browse/AMQ-3052
33 https://issues.apache.org/jira/browse/YARN-3472
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Fig. 7 Heatmap of relationship between root causes and repair actions.

removed tokens are not removed from allTokensmap resulting in a potential
memory leak. Developer fixed the issue by adding a call to remove method
which removed the expired token from the map.� �

−−− org/apache/hadoop/yarn/server/resourcemanager/security/DelegationTokenRenewer.java
+++ org/apache/hadoop/yarn/server/resourcemanager/security/DelegationTokenRenewer.java
@@ −577,6 +577,7 @@ private void requestNewHdfsDelegationTokenIfNeeded(

...
if (t .token.getKind(). equals(new Text(‘‘HDFS_DELEGATION_TOKEN’’))) {

iter .remove();
+ allTokens .remove(t.token);

...� �
Shutdown finished thread (threadDown). A live thread of the application should
be destroyed by the programmer when the thread task is completely finished.
Adding a call to the shutdown method or adding a disposal method are the
common repair actions for fixing the leaks caused by threads. HDFS-900334

reports a thread leak when a standby NameNode initializes the quota. Here,
the thread pool is not shut down. To fix this bug, the developers added a call
to the shutdown method.� �

−−− org/apache/hadoop/hdfs/server/namenode/FSImage.java
+++ org/apache/hadoop/hdfs/server/namenode/FSImage.java
@@ −880,6 +880,7 @@ static void updateCountForQuota(BlockStoragePolicySuite bsps,

root , counts) ;
p.execute(task) ;
task . join () ;

+ p.shutdown();� �
Results. In following, we show the results of our analysis on the repair patches
in three sub-questions. First, we study the frequency of the repair actions.
Second, we analyze the mapping between the root causes and the repair actions
to find the relationship between these two taxonomies. Finally, we report the
common code transformations found in the fix patches.

Finding 1. Table 6 lists the common repair actions along with the number
of issues corresponding to them. About 93% of the resource leaks are repaired
with three major actions: disposeReg, disposeExcep, and threadDown, while

34 https://issues.apache.org/jira/browse/HDFS-9003
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Table 7 Recurring code transformations and examples of code before and after the
transformations.

– Code transformation 1: Conditional disposal of resource.
Example: dispose(obj)→ If (obj != null) obj.dispose()

– Code transformation 2: Add disposal method call.
Example: None → obj.dispose()

– Code transformation 3: Add disposal method.
Example:None → void dispose()

– Code transformation 4: Set obsolete reference to null.
Example: None → obj=null

– Code transformation 5: Add catch/try-catch block.
Example: Type obj = new Type() →
try {Type obj = new Type()} exception {dispose(obj)}

– Code transformation 6: Add finally/try-finally block
Example: Type obj = new Type() →
try {Type obj = new Type()} finally {dispose(obj)}

– Code transformation 7: Add try-with-resources statement.
Example: Type obj = new Type() → try {Type obj = new Type()}

– Code transformation 8: Change condition expression.
Example: If (cond1) obj.dispose() → If (cond1 and cond2) obj.dispose()

– Code transformation 9: Change method call parameters.
Example: obj.method(x, y) → obj.method(x, z)

– Code transformation 10: Change static object to a non-static.
Example: static Type obj = new Type() → Type obj = new Type()

– Code transformation 11: Change to weak reference.
Example: new HashMap<key, value>() →
new HashMap<key,WeakReference(value)>()

– Code transformation 12: Replace method call.
Example: obj.method1() → obj.method2()

– Code transformation 13: Change collection.
Example: obj = new <collection1>() → obj = new <collection2>()

about 73% of the memory leaks are fixed with two repair actions releaseRef
and removeElm.

Finding 2. Figure 7 reveals an almost one-to-one mapping between some
root causes and repair actions (e.g., exception → disposeExcep,
collection → removeElm, concurrency → threadSafe,
concurrency → threadSafe). Leak defects with the root cause type
nonClosedRes are repaired with repair actions threadDown and disposeReg.
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Fig. 8 Heatmap of recurring code transformations and single repair actions.

Leak defects with the root cause type unreleaseRef are repaired with repair
actions releaseRef and weakRef.

Finding 3. We find 13 recurring patterns in the repair patches. Table 7
lists the recurring code transformations and the code examples before and
after the transformations. Our analysis shows that 88 (out of 491) issues are
repaired with a single code transformation. For these issues, we further
analyze the quantitative relationship between the repair actions and the
most common code transformations. Figure 8 shows the heatmap of the
quantitative analysis. For this heatmap, we only consider repair patches with
a single code transformation. Code transformation Add finally/try-finally is
often used in the repair actions disposeReg or disposeExcep. Code
transformation Add catch/try-catch is the most used code transformation for
repair action disposeExcep. We also observe a direct relationship between the
repair action RemoveElm and the code transformation Call disposal method.

This result can encourage the researchers to implement patches for leak-
related defects based on template-driven patch generation techniques in the
direction of previous work (Kim et al. 2013; Meng et al. 2013; Pan et al. 2009).

Summary. Overall, five repair actions are used by developers to
repair over 86% of the issues in our dataset. We found 13 recurring
code transformations. 88 of the issues are repaired with a single code
transformation.

4.6 RQ6: How complex are repairs of the leak-inducing defects?

Motivation. This research question addresses the complexity of changes
applied to repair the leak-inducing defects. Besides this, we analyze the time
to resolve (TTR) for different repair actions. We also compare TTR between
leak-related and non-leak-related defects. In this question, we want to find
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how complex are the repair patches. The results can provide more insights on
how complex are the repair patches and how long does it take to repair a
leak-inducing defect.
Approach. To assess the complexity of changes, we compute the code churn
and change entropy (Hassan 2009).

Code churn is the sum of added and deleted lines in a repair patch. We
only consider changes in the code statements and ignore comments or empty
lines when calculating the code churn metric.

We use change entropy to find scatteredness of the changes. Derived from
Shannon entropy in information theory, the change entropy measures the
complexity of the changes. To measure the change entropy, we use the
normalized Shannon entropy (Hassan 2009; Chen et al. 2016). It is defined
as:

H =
−
∑n

i=1 p(filei) · logep(filei)
loge(n)

,

where n is the total number of files in a repair patch and p(filei) is defined
as the number of lines changed in filei over the total number of lines changed
in every file of that repair patch. Change entropy achieves its maximum value
when all the files in a repair patch have the same number of modified lines.
In contrast, we can achieve a minimum of entropy when only one file has the
total number of modified lines. Using the entropy, we can find how complex
are the repair patches. The higher the entropy, the more complex the repair
patch.

To asses the time to resolve (TTR) of an issue report, we adopted the
methodology used in previous studies (Song and Lu 2014; Nistor et al. 2013; Jin
et al. 2012b). We collect two timestamps from each issue report: the time it was
created (recorded in the issue tracker), and the time it was resolved (labeled
as resolved). For GitHub projects, we use the closed timestamp as the resolved
timestamp as it is the only available timestamp in the issue report. For issues
with multiple patches, the resolved timestamp is the time of the latest patch
being applied to repair the bug. The TTR is the difference between created
and resolved timestamps. The reason for using TTR is that the bug trackers
used in this study (i.e., Jira and GitHub bug tracker) record no information
about the exact amount of coding time needed for fixing a bug.
Results. In the following, we show the results of our analysis of the complexity
of the repair patches.
Distribution of code churn.. Figure 9 shows the box plot of code churn for
different repair actions. The line within each box points to the median value
of the code churn for that repair action.

Finding 1. In about all repair actions, the median of code churn is less
than 20 lines of code while the repair action disposeExcp shows the highest
median value.

Finding 2. Figure 10 shows the distribution of added and removed lines
over studied projects. In all the projects, the median of added lines (29.5
lines) shows a larger value than the removed lines (16.5 lines). Hence, the
fault repairing changes often increase the codebase of the applications.
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Finding 3. Figure 11 shows the distribution of change complexity over the
repair patches. The distribution appears to be bimodal with the main peak
around zero and a lower one around one. The change complexity analysis
shows that the changes applied for repairing leak-inducing defects are more
concentrated in fewer files and are less scattered. This result can be a useful
finding for automated fault localization as it shows the high localization in
leak-inducing defects.
Time to resolve (TTR). Figure 12 shows distribution of TTR across repair
actions. Figure 13 shows the distribution of the TTR for the leak-related and
other defects in the studied projects. To calculate the TTR for other defects,
we collect the created and resolved timestamps of all bugs with the resolution
“FIXED” (except the leak-related defects) from the studied projects in the
same time frame that we collected the leak defects.

Finding 4. On median, about 5.88 days is needed for developers to fix a
leak-inducing defect. This time is slightly lower than the TTR for repairing
non-leak defects (about 6.04 days). One reason could be that leak-related
defects are important for users and developers. The data in our dataset also
confirms this. The issue priority in about 84% of the issues in projects from
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Apache are labeled as Blocker, Critical, or Major (which are the highest
priority levels in the Jira bug tracker). This corroborates with the
assumption that leak-inducing defects impose a high negative impact on the
performance of the applications, and are highly prioritized by development
teams.

Summary. The change entropy shows that the changes are more
concentrated in fewer files and therefore less scattered. The median
TTR of the leak-inducing defects is about 5.88 days.

4.7 Other Results

In this section, we provide other findings found by our study.
Efficiency of static analysis tools. In RQ2 (Section 4.2), we showed that
only in one issue (i.e., CASSANDRA-7709), the resource leak was reported
using a static analyzer. There are many static analysis tools for leak
detection. They are mostly used for resource leak detection (e.g., FindBugs,



Memory and Resource Leak Defects and their Repairs in Java Projects 31

AM
Q

CA
SS

AN
DR

A

CX
F

HA
DO

OP

HB
AS

E

DE
RB

Y

HI
VE

HT
TP

CO
M

P

SO
LR

LU
CE

NE

Rx
Ja

va

Lo
gs

ta
sh

Re
al

m
 Ja

va

Sp
rin

g 
Bo

ot

Se
le

ni
um

0

100

200

300

400

Du
ra

tio
n 

(d
ay

s)

Type
Non-leak
Leak

Fig. 13 TTR comparison of leak-related and other bugs in studied projects.

Coverity, and Infer). Static analyzers can also be used to detect memory
leaks. However, static memory leak detection is imprecise and not scalable
for large programs (Xu and Rountev 2013; Xu et al. 2010). This inefficiency
can be largely attributed to the presence of the garbage collector and lack of
runtime information. However, one could ask why these tools are not
mentioned in the studied issue reports. One reason might be that static
analyzers have been employed earlier in the development process, and all
leaks detected were fixed.

In our study, we showed that more than half of the studied leaks are
resource leaks. It is interesting to study whether static analyzers can detect
the studied leak issues. For this purpose, we perform an evaluation of our
dataset. We randomly select 30 issues reporting resource leaks from our
dataset. As a static analysis tool, we choose Infer which is used by large
software organizations35. We selected Infer because it is an open source tool
and can detect resource leaks in Java. The applicability of Infer for resource
leak detection is also confirmed in the previous work (van Tonder and Goues
2018).

Table 8 shows the result of our evaluation. From 30 issues, Infer was able
to detect the leak defects reported in eight issues. To apply Infer, we first
have to build the buggy version of the application in question which contains
the leak. After a successful build, Infer produces a file reporting all potential
resource leaks. Finally, we investigate whether the file contains the reported
leak. We further investigate the eight issues detected by Infer to find the
shared characteristics among those issues. In all cases, the leaks occurred in
normal execution paths. The analysis shows that Infer was not able to detect
leaks triggered in exceptional paths in the sample set. We also observe that
developers repaired the leak defects by disposing of the unclosed resources
in a try-finally block. This result can encourage the researcher and tool
developers to improve current static analysis tools for leak detection.

35 http://www.fbinfer.com
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Table 8 The evaluation of Infer static analyzer on a sample of resource leaks from our
dataset. Column “Detected?” reports whether Infer could detect the defect reported in the
respective issue. “Code-based detection” refers to source code-based detection. “Defect” type
and “Repair” type are explained in Section 4.4 and Section 4.5, respectively.

Issue Detected? Detection Defect Repair

AMQ-5745 3 Code-based nonClosedRes disposeReg
AMQ-6051 No Runtime exception disposeExcep
CASSANDRA-7709 No Runtime exception disposeExcep
CASSANDRA-9134 No Runtime nonClosedRes disposeReg
DERBY-5480 3 Runtime nonClosedRes disposeReg
HADOOP-10203 No Runtime nonClosedRes disposeReg
HADOOP-10490 3 Runtime nonClosedRes disposeReg
HADOOP-11014 No Code-based exception disposeExcep
HADOOP-11056 No Code-based exception disposeExcep
HADOOP-11349 No Code-based exception disposeExcep
HADOOP-11368 No Runtime nonClosedRes threadDown
HADOOP-11414 No Code-based exception disposeExcep
HADOOP-9681 3 Runtime nonClosedRes disposeReg
HBASE-10461 No Code-based exception disposeExcep
HBASE-10995 3 Code-based nonClosedRes disposeReg
HBASE-13601 No Runtime exception disposeExcep
HBASE-13797 3 Code-based nonClosedRes disposeReg
HDFS-1118 No Code-based exception disposeExcep
HDFS-1753 No Code-based exception disposeExcep
HDFS-5099 No Runtime nonClosedRes disposeReg
HDFS-5671 No Runtime exception disposeExcep
HDFS-6208 No Code-based nonClosedRes disposeReg
HDFS-6238 3 Runtime nonClosedRes disposeReg
HIVE-12250 No Runtime nonClosedRes disposeReg
HIVE-12790 No Runtime nonClosedRes disposeReg
HIVE-13405 No Code-based exception disposeExcep
MAPREDUCE-6528 No Runtime exception disposeExcep
YARN-2484 No Code-based exception disposeExcep
YARN-2988 3 Code-based nonClosedRes disposeReg
YARN-4581 No Runtime exception disposeExcep

Comparison of common code transformations. In RQ5 (Section 4.5),
we showed 13 common code transformation found in the studied fix patches.
Previous work also reported common repair patterns (Kim et al. 2013; Liu
et al. 2013; Pan et al. 2009). PAR (Kim et al. 2013) found 10 manual repair
patterns for Java. (Liu et al. 2013) used 8 patterns (2 of them for repairing
memory leaks) to provide patches for bugs in C. Pan et al. (2009) introduced
27 automatically extractable repair patterns.

We compare our 13 patterns with previous work to find which patterns
are not reported before. Table 9 shows the result of our evaluation. The result
shows that six code transformations were not reported before. We can also
observe that “conditional disposal of resource” was also used in all studied
previous work. The reason why previous work did not report some of the code
transformations found by our study may be because they focused on functional
bugs, while our study targets leak-related defects. We found that some of the
fixes are specific for leak-related defects. For example, try-with-resources is
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Table 9 Comparison of common code transformations found in our study with previous
work. 27Repairs refers to Pan et al. (2009).

Our study PAR R2FIX 27Repairs

Conditional disposal of resource 3 3 3
Add disposal method call 5 3 5
Add disposal method 5 5 3
Set obsolete reference to null 5 5 5
Add catch/try-catch block 5 5 3
Add finally/try-finally block 5 5 5
Add try-with-resources statement 5 5 5
Change condition expression 3 5 5
Change method call parameters 3 5 3
Change static object to a no-static 5 5 5
Change to weak reference 5 5 5
Replace method call 3 5 3
Change collection 5 5 5

only introduced to avoid potential resource leaks caused by not disposing of
closable resources.

5 Implications of the Study

Based on the findings of our empirical results, we discuss the implications of
our study for both researchers and practitioners.
Prevalence of leak types. Understanding which types of leaks are
prevalent in a project can help to avoid and detect leak defects efficiently.
The results of Section 4.1 show that each studied project has a particular
dominant leak type. This knowledge can be exploited by prioritizing the
most effective detection methods for the dominant leak types. As shown
in Section 4.2, memory leaks and resource leaks have distinct best practice
detection methods which can be used in a software development process.
Manual code inspection is the dominant detection method for resource leaks.
Projects with a large number of resource leaks can benefit from this
detection method. One can further improve this by using techniques like
code self-review based on the Personal Software Process (PSP) (Humphrey
2000) with checklist items adapted for detection of resource leaks. For
memory leaks, about 63% of the issues are detected or observed using the
runtime information. Projects with a large number of memory leaks should
consider the regular usage of the profiling tools. Profiling measures different
metrics such as memory or time complexity of a program during its runtime.
With this data, programmers can continuously check the resource usage of
the program and react faster to the abnormal behavior.

In practical terms, the knowledge of the dominant leak types can be gained
via (1) mining distribution of the leak types (or at least the dominant ones)
from the bug trackers and repositories, and (2) improving the bug trackers
with a labeled classification of the leaked resource.
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Good practices. Good practices can considerably reduce the probability of
introducing a leak defect. Such practices can be obtained for example from
Java documentation or from existing research work. Here we describe two
good practices.
Use try-with-resources on AutoCloseable resources. Introduced in Java 7, try-
with-resources statement is an efficient method for better management of the
closeable resources. It ensures that each resource is closed at the end of the try
statement. Our empirical study shows that about 32.4% of the resource leaks
are caused by bad exception handling. The try-with-resources statement can
help to avoid such defects as many current Java applications support Java 7
or higher.
Prevent having a strong reference from the value object to its key in a
HashMap. As opposed to regular references, weak references do not protect
the objects from being disposed of by the garbage collector. This property
makes them suitable for implementing cache mechanisms through
WeakHashMap, where the entry will be disposed of as soon as the key
becomes unreachable. If the value objects of a HashMap refers to its own
key, the programmer should wrap the value as WeakReference before putting
the value into the map as recommended by the Java documentation36.
Otherwise, the key cannot be discarded.
Software testing for leak detection. Software tests can be used as a
lightweight leak detection tool. They are beneficial for decreasing the cost of
leak defects by triggering the leaks before the production phase. Our study
shows that over 11% of the leak defects are detected as the result of a failing
test (Table 4). Works like (Fang et al. 2015; Ghanavati and Andrzejak 2015)
corroborate with our results by showing the effectiveness of leak detection
via testing.
Fault localization. Fault localization is the first step in automated program
repair. Defects with high locality can be repaired with low code churn. Our
results showed that leak defects are highly localized. First, in 57% of the
issues, only one file was modified. This value increases to 73% for repairs with
changing two files at most. Second, in about 90% of the issues, only Java files
are changed. These findings can encourage researchers to improve and develop
techniques for the automated repair of leak defects.
Template-driven patch generation. Previous works proposed
patch-generation techniques based on the templates derived from existing
human-written patches (Kim et al. 2013; Le et al. 2016). Work (Selakovic
and Pradel 2016) showed the existence of common patterns for performance
problems in JavaScript. We evaluated the potential of providing
template-driven repairs for leak defects through studying repair patches. We
found 13 common code transformations used by developers. About 57% of
the issues from patch analysis dataset are repaired by a combination of one
or more of these code transformations. These results show the potential of

36 https://docs.oracle.com/javase/7/docs/api/java/util/WeakHashMap.html
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template-driven patch generation techniques for repairing leak-inducing
defects.

6 Threats to Validity

In this section, we discuss the threats to the validity of our study.
Construct validity. The quality of dataset used in our study is a threat to

construct validity. First, we used Jira and GitHub bug tracker to collect leak-
related defects. This set of defects does not necessarily include all leak defects
in the studied applications. Conversely, some investigated defects might never
be manifested at runtime. This might be especially the case for issues found by
source-code-based detection. Second, to answer research questions, we relied
on the information provided in the bug reports as they are the only source
of information available. Although the bug reports in the studied projects
are often high-quality reports with useful information, it is possible that the
reporter provided insufficient information in the report or described the issue
incorrectly. However, since we investigate a large number of defects and focus
on distributions and their relations, we expect that our findings describe the
characteristics of the whole defect population in general.

Second, We used a simple keyword search to find leak-related bugs. Issues
that do not contain the keyword “leak” can be incorrectly omitted from our
data collection process. We searched for other leak-related keywords, but our
query yield many false positives. To minimize such threats related to
insufficient or skewed sampling of the leak defect population, we used a large
set of leak-related bugs (491 issues) from 15 large-scale projects from a
variety of application categories and different software repositories.

Third, we only found one leak-related defect in our dataset in which the
leak was detected by a static analyzer. One reason might be that the most
leak-related issues are reported on a released version of an application and
not during the development phase. It might be the case that the developers
already used static analyzers in the development phase to remove the potential
leak-related defects in the production environment.

Internal validity. Experimenter bias and errors are threats to internal
validity. In this study, we heavily used manual analysis for categorization.
When generating taxonomies defined in our study, we manually extracted the
contents of the issues and used our knowledge to assign a bug to a category.
To lower the risk of error in the process of manual categorization, we applied
the open coding methodology. Furthermore, the raters discussed any conflicts
to reach a consensus in the decision-making meetings. We have spent many
hours studying all data related to each defect such as issue title and description,
developer discussions, and repair patches. We also computed Cohen’s kappa,
which is a robust metric for measuring inter-rater agreement. The kappa values
ranged from 0.57 to 0.86 that shows a moderate to substantial agreement
between the raters. We also make our dataset available online to improve the
replicability of our study.
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External validity. Threats to external validity are related to the
generalizability of our findings and implications. We collect our dataset from
different categories of open source projects. The projects may not be
representative for closed source projects. Our results are derived from 15
projects and some findings may not apply to projects written in other
languages.

7 Related Work

There is a large body of work in detection, localization, and repairing
functional and non-functional bugs. Here we cover work related to our study,
grouped in three research directions.

Empirical study. There are many previous works studying
characteristics of bugs (Zhong and Su 2015; Jin et al. 2012b; Song and Lu
2014; Selakovic and Pradel 2016). Zhong and Su (2015) extracted and
analyzed the characteristics of the real bug fixes from six Java projects.
Plumbr (plu 2017) reported that over 50% of mature Java applications
contain memory leaks. However, it provided no analysis of the characteristics
of the memory leaks.

Close to our study are work of Machida et al. (2012) and Tan et al. (2014)
which investigated memory-related bugs. Machida et al. (2012) investigated
five open source Java projects related to cloud computing and found 55 leak-
related defects. They showed that in all studied projects leak-related bugs exist
with the ratio ranged from 0.4% to 1.4% of the total bugs. The majority of 55
leaks were file descriptor leaks comprising of 30% of the cases. Tan et al. (2014)
studied the characteristics of three open source projects Written in C. They
showed that memory-related bugs are one of three main causes of bugs (in
addition to concurrency and semantic bugs). They found that 16.7 to 40.0%
of the memory bugs across the studied projects are caused by memory leaks.
They also showed that the severity of memory leaks is high as most of them
result in a crash.

Our study differs from the above-mentioned studies. We studied both
resource and memory leak-related defects from 15 open source projects. We
performed an in-depth analysis of leak defects and their repairs providing
taxonomies for leak type, leak detection, fault localization, root-causes, and
repair actions. We found that there are common repair patterns for fixing the
leak defects. We also evaluated the complexity of the repair patches. Finally,
we drawn actionable implications based on our observations and findings.
Hence, we believe that our study considerably differs from the previous work
in both sizes of the studied dataset and depth of analysis.

Automated diagnosis of memory and resource leaks. Various
techniques are proposed by researchers to diagnose memory and resource
leaks.
Memory leaks. Static analysis is used to detect memory leaks (Xie and Aiken
2005; Heine and Lam 2003; Cherem et al. 2007; Orlovich and Rugina 2006).
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These approaches like other static approaches in fault localization suffer from
the lack of scalability and precision. LeakChecker (Yan et al. 2014) tries to
decrease the inaccuracy via investigating loops provided by the developer as
an oracle for memory leak detection.

To mitigate the problems of static analysis, other researchers leverages
dynamic analysis to detect memory leaks. The major directions of dynamic
leak detection are: staleness detection (Hauswirth and Chilimbi 2004; Bond
and McKinley 2006; Novark et al. 2009; Jung et al. 2014), growth
analysis (Jump and McKinley 2007; Sor et al. 2013; Matias et al. 2014; Fang
et al. 2015; Ghanavati and Andrzejak 2015; Langner and Andrzejak 2013),
analysis of captured state (Mitchell and Sevitsky 2003; Clause and Orso
2010; Xu et al. 2011), and hybrid approaches (Xu and Rountev 2008;
Rayside and Mendel 2007).

(Xu and Rountev 2008) focuses on the memory leak defects related to
collections and try to rank the suspicious statements by assigning a leak
confidence value based on staleness and memory usage. In our study, we
quantitatively show that collections are one of the major root causes of
memory leak defects.

Some studies introduced approaches to tolerate the memory leaks by
keeping the program in a running state (Bond and McKinley 2008; Rayside
and Mendel 2007; Bond and McKinley 2009). They achieve this by reducing
performance degradation (e.g., with predicting and reclaiming the leaky
objects at runtime).
Resource leaks. Many approaches are used to detect leaks via static analysis
including value-flow reachability analysis (Cherem et al. 2007), data-flow
analysis (Orlovich and Rugina 2006), object ownership analysis (Rayside and
Mendel 2007), loop invariant analysis (Yan et al. 2014), and automated
resource management (Dillig et al. 2008; Nguyen et al. 2015; Torlak and
Chandra 2010; Weimer and Necula 2004). They often leverage static analysis
techniques to find the unclosed resources on different execution paths.
Another research direction is resource leak detection in Android(Guo et al.
2013; Banerjee et al. 2018).

Automated leak repair. Recently, automated program repair attracted
the attention of researchers. Pioneering work GenProg (Weimer et al. 2009)
introduced a patch generation technique based on a genetic search
algorithm. Kim et al. (2013) proposed an automated program repair
technique based on patterns learned from real patches. It generates correct
patches for 27 out of 119 bugs. All the provided fix patterns are simple and
one-line statements. Prophet (Long and Rinard 2016) learns the properties of
successful patches to guide finding the appropriate candidates. HDRepair (Le
et al. 2016) leverages information derived from the history of the previous
patches of hundreds of Java projects to select the correct patch candidates.
All the mentioned techniques differ in defining the search space and the
approach to find the accurate patch.

Semantic-based techniques have also been explored (Nguyen et al. 2013;
Mechtaev et al. 2016). Angelix (Mechtaev et al. 2016) is a good example of this
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category which extracts semantic constraints from the application codebase
and generates fixes using program synthesis.

Automated leak repair is still embryonic, and only few works exist in
literature (van Tonder and Goues 2018; Gao et al. 2015; Yan et al. 2016; Liu
et al. 2013). van Tonder and Goues (2018) purposed Footpatch on top of
Infer. Footpatch could generate fixes for resource leaks in C and Java as well
as fixes for memory leaks in C. (Gao et al. 2015; Yan et al. 2016) leveraged
static, and dynamic analysis to fix memory leaks in C. They analyze the
execution paths of each allocation/deallocation and insert a free when no
release is encountered. Liu et al. (2013) used two repair patterns (AddFree
and MvFree) and provide correct patches for 16 out of 41 memory leaks in C.

8 Conclusions and Future Work

Diagnosis of leak-inducing defects is one of the main challenges for both
researchers and practitioners in software development and maintenance.
Understanding the characteristics of resource and memory leaks can provide
useful information to further improve leak diagnosis techniques. For this
purpose, we conducted a detailed empirical study on a large dataset (491
issues from 15 mature projects) to understand how leaks are detected, which
defects create them, and which types of repairs exist. Our findings and
implications showed that even by simple changes in the quality assurance
processes (e.g., code review, testing), the avoidance and diagnosis of leaks
could be significantly improved.

In our future work, we will conduct a study on current practices for
preventing resource and memory leaks. We will interview Java developers to
find out which leak detection tools they use and why they are used. We will
also mine the Java codebases to check whether language enhancements such
as try-with-resources construct are used, and their impact on the
distribution of leak-related defects. We will also evaluate approaches for
automated repair of the leak-inducing defects with the focus on
template-driven patch generation techniques. We plan to implement a fault
injector which simulates the distribution of the leak types and the defect
types in real applications. It can serve as a realistic benchmarking tool for
the evaluation of methods and tools for leak diagnosis.
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